

DEPARTMENT OF THE AIR FORCE AIR FORCE CIVIL ENGINEER CENTER JOINT BASE CHARLESTON SOUTH CAROLINA

31 March 2025

Ms. Laura Powers AFCEC/CZOE, JB Charleston ISS 203 S. Davis Drive, Bldg 247, 1st Floor Joint Base Charleston, SC 29404-4707

Mr. Robert A. Dunn, Hydrogeologist Underground Storage Tank Management Division Bureau of Land and Waste Management South Carolina Dept. of Health and Environmental Control 2600 Bull Street Columbia, SC 29201

RE: Draft Final Site-Specific Work Plan and Groundwater Monitoring Report for AOC T (TU544), Building 129 UST (GWPD #16344), Joint Base Charleston-Air, South Carolina

Dear Mr. Dunn,

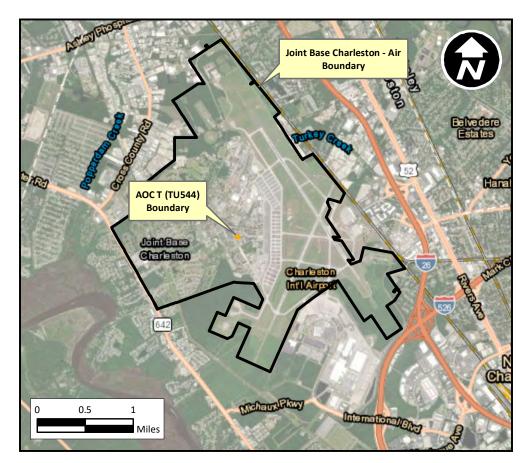
The purpose of this letter is to submit one (1) hardcopy and electronic copy (CD) of the subject plan for Area of Concern T (AOC T, TU544, GWPD #16344) at Joint Base Charleston-Air, South Carolina for your review and approval. Should you have any questions or comments regarding the attached, please contact me by telephone at (843) 963-2701 or by email at <u>laura.powers.3@us.af.mil</u>.

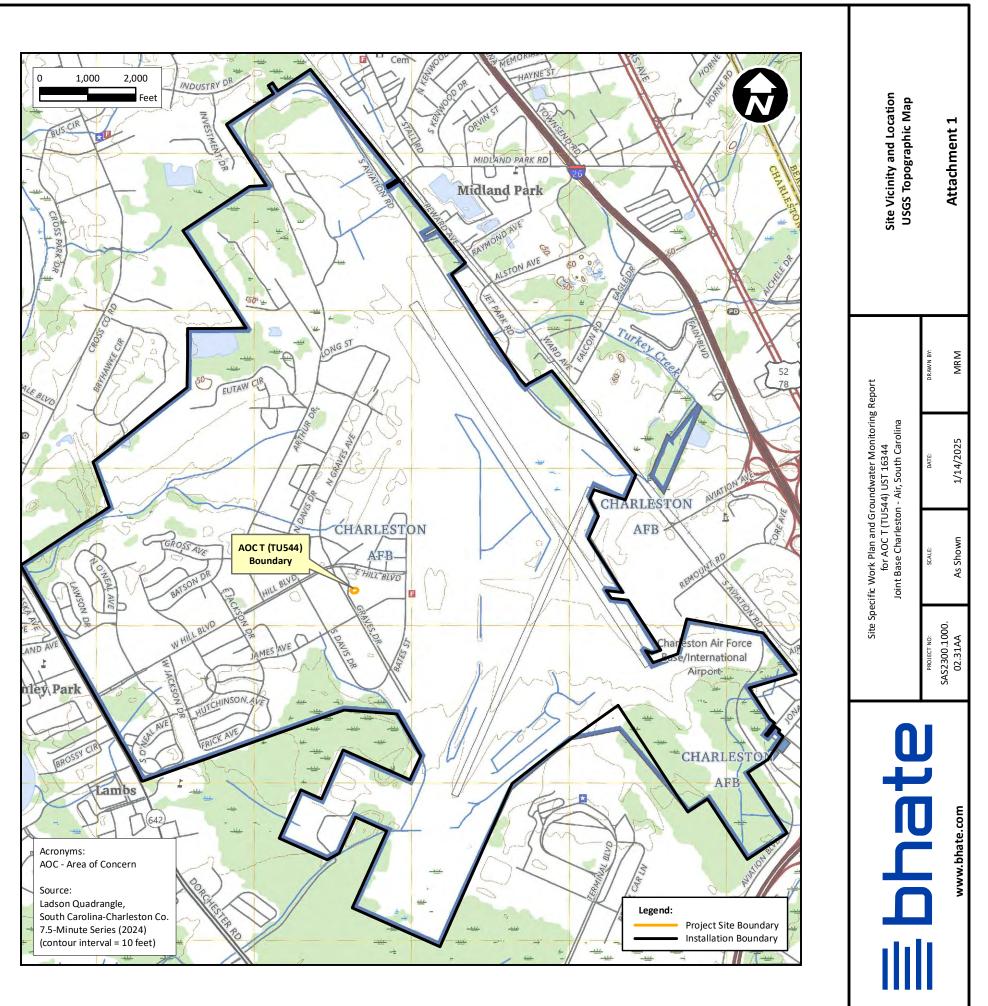
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. This document is signed and certified in accordance with R.61-79.270.11 and 270.30(K).

Sincerely, Laureige

LAURA POWERS, GS-12, DAFC Remedial Project Manager

cc: Elizabeth Rhine (Bhate Environmental Associates, Inc.)




Site-Specific Work Plan for Approved ACQAP Underground Storage Tank Management Division

То:			(SC	CDHEC Project Manager)	
From:	(Contractor Project Manager)				
Contractor:	UST Contractor Certification Number:				
Facility Address:					
RP Address:					
Property Owner (if different):			· · · · · · · · · · · · · · · · · · ·	
Property Owner Address: _					
Current Use of Property:			· · · · · · · · · · · · · · · · · · ·		
Scope of Work (Please ch					
	Tier II		Groundwater Sampling	□ GAC	
	Monitoring Well Installation		Other		
Analyses (Please check a					
Groundwater/Surface Wate					
□ BTEXNMDCA (8260D)	□ Lead		D BOD	□ Methane	
Oxygenates (8260D)	🗆 8 RCRA Me	etals	Nitrate	Ethanol	
□ EDB (8011)			Sulfate	Dissolved Iron	
□ PAH (8270E)	D pH		Other		
Drinking Water Supply Well					
□ BTEXNMDCA (524.2)	□ Mecury (20		245.2) □ EDB (504.	1)	
Oxygenates & Ethanol (8260D)	als (200.8)			
Soil:					
□ BTEXNM □ Lead	RCRA Metals		TPH-DRO (3550B/8015B)		
D PAH	Oil & Grease (9071) 🗆	TPH-GRO (5030B/8015B)		
Air:					
D BTEXN					
	ate the number of samples o		x that are expected to be co	,	
Soil	Water Su		Air	Field Blank	
Monitoring Wells	Surface	Water	Duplicate	Trip Blank	
Field Screening Methodo	loqy				
_	completed depth for each po	pint, and inclu	ide their proposed locations	s on the attached map.	
	ed:			•	
	gy:				
Permanent Monitoring We		all and inclu	to their proposed leastions	on the attached man	
	completed depth for each we			•	
	E:				
	E:				
# of recovery wells: Comments, if warranted:	E:	sumated Foo	tage:		
Comments, il warranteu.					

UST Permit #: F	acility Name:		
Implementation Schedule (Number of Field Work Start-Up: Report Submittal:		s from approval) Field Work Completion: # of Copies Provided to Property Owners:	
Aquifer Characterization Pump Test: □ Slug Test: □ (Check	one and provi	ide explanation below for choice)	
Investigation Derived Waste Disposal		Purge Water: Free-Phase Product:	Gallons
Drilling Fluids:	_ Gallons	Free-Phase Product:	Gallons
Additional Details For This Scope of V For example, list wells to be sampled, we event, etc.		ndoned/repaired, well pads/bolts/caps to replace, detail	s of AFVR
Name of Laboratory: SCDHEC Certification Number: Name of Laboratory Director:	? (Yes/No)	If no, indicate laboratory information below.	
Well Driller as indicated in ACQAP Name of Well Driller: SCLLR Certification Number:			
Other variations from ACQAP. Ple	ase describe b	pelow.	
		GS topographic map showing the site location.	-
 Prepare a site base map. This r must include the following: North Arrow Location of property lines Location of buildings Previous soil sampling locations Previous monitoring well location Proposed soil boring locations 	Proposed Legend w Streets or Location o	ccurately scaled, but does not need to be surveyed. T monitoring well locations ith facility name and address, UST permit number, and highways (indicate names and numbers) of all present and former ASTs and USTs of all potential receptors	·
3. Assessment Component Cost A	greement, SCI	DHEC Form D-3664	

Attachment 2

Site-Specific Work Plan and Groundwater Monitoring Report for Area of Concern (AOC) T (TU544)

SECTION A: PROJECT MANAGEMENT

A1 TITLE AND APPROVAL PAGE

Project Name and Site Location:	Quality Assurance Project Plan Addendum to the SCDES UST Programmatic QAPP for Area of Concern (AOC) T (TU544)
	Joint Base Charleston – Air (JBCA) Charleston, South Carolina (SC)
	Facility Identification (ID) SC3570024460
	Permit #01827
Contract Number:	Carolina Group Optimized Remediation Contract (ORC) W912HN-23-C-1000
Prepared on behalf of:	Air Force Civil Engineer Center (AFCEC) 2261 Hughes Avenue, Suite 155 Joint Base San Antonio Lackland Air Force Base, Texas 78236
Prepared by:	Bhate Environmental Associates, Inc. (Bhate) 1608 13 th Avenue South, Suite 300 Birmingham, Alabama (AL) 35205
Certified Contractor Number:	UCC0439
Document Title:	Site-Specific Work Plan and Groundwater Monitoring Report for Area of Concern [AOC] T (TU544) Joint Base Charleston – Air (JBCA) South Carolina
Preparation Date:	March 2025

APPROVALS

Name/Title	Signature	Date
Robert Dunn		
South Carolina Department of Environmental Control (SCDES) Hydrogeologist/ Underground Storage Tank (UST) Technical Project Manager (PM)		
Erin Epperson		
SCDES UST QAPP Coordinator		
Shauna Stotler		
United States Army Corps of Engineers (USACE) Contracting Officer's Representative (COR)		
Laura Powers		
AFCEC JBCA Remedial Project Manager (RPM)		
Phil Bambach, Professional Geologist	25655550000000	3/31/25
([PG] Number 2893)	GISTER: Y	
Bhate Installation PM	No. 2893 Nhul Dack	
Elizabeth Rhine		3/31/25
Bhate Program Manager (i.e., Optimized Remediation Contract [ORC])	Sabert Ruine	-, - , -
Marcia Olive		
Bhate Program Chemist		
Corey Green		
Bhate Program Quality Assurance (QA)/Quality Control (QC) Manager		
Caitlin Ryan		
Bhate Field Technician		
Chris Johnson		
Pace National Laboratory Director		
Duth Mr. I-h		

Ruth Welsh

Pace National Project Manager

Attachment 2	1
SECTION A: PROJECT MANAGEMENT	1
A1 TITLE AND APPROVAL PAGE	1
Approvals	2
Table of Contents	3
List of Acronyms	6
A3 DISTRIBUTION AND PROJECT ORGANIZATION LIST	9
TABLE 1A ADDENDUM DISTRIBUTION AND PROJECT ORGANIZATION LIST	9
A4 Project Organization	
A5 PROBLEM DEFINITION/BACKGROUND	
A6 Project/Task Description and Schedule	
Treatment System Installation Activities	
BSp Well and Vapor Point Monitoring Design/Specifications	
Management of Soil Cuttings	
BSp Equipment Setup and Operating Parameters	
System Startup and Bioaugmentation	
System Operation	15
Performance Monitoring	
Management of Purge Water	
Reporting	
A7 DATA QUALITY OBJECTIVES (DQOS)	
A8 TRAINING AND CERTIFICATION	
Training	
Laboratory Certification	
Ruth.Welsh@pacelabs.com Laboratory Standard Operating Procedures	20
A9 Documents and Records	20
TABLE 2A Record Identification, Storage, and Disposal	
REFERENCES	
SECTION B: MEASUREMENT/DATA ACQUISITION	23
B1 SAMPLING PROCESS/EXPERIMENTAL DESIGN	23
TABLE 3A SAMPLING ACTIVITIES	

Table of Contents

B2 SAMPLING METHODS
TABLE 4A FIELD CORRECTIVE ACTION 24
B3 Sample Handling and Custody
B4 Analytical Methods
Table 5A Analytical SOPs and Referenced Methods
Parameter
Method Referenced
EQUIPMENT/INSTRUMENTATION
LABORATORY SOP
B5 QUALITY CONTROL REQUIREMENTS
B6 Field Instrument and Equipment Testing, Inspection, and Maintenance
Table 6A Instrument and Equipment Maintenance 25
B7 Instrument Calibration and Frequency
TABLE 7A INSTRUMENT CALIBRATION CRITERIA AND CORRECTIVE ACTION 25
B8 Inspection/Acceptance Requirements for Supplies and Consumables
B9 DATA ACQUISITION REQUIREMENTS (NON-DIRECT MEASUREMENTS)
Table 8A Non-Direct Measurements 26
B10 DATA MANAGEMENT
SECTION C: ASSESSMENT AND OVERSIGHT
C1 Assessment and Response Actions
C2 REPORTS TO MANAGEMENT
SECTION D DATA VALIDATION AND USABILITY

Figures (Figure 1 provided on page 10)

- Figure 1. Project Organizational Chart
- Figure 2. AOC T (TU544) Site Map
- Figure 3. AOC T (TU544) Potentiometric Surface (September 2023)
- Figure 4. AOC T (TU544) September 2023 and April 2024 Groundwater Sampling Data
- Figure 5. AOC T (TU544) Biosparge Well Locations

Tables

- Table 1. Monitoring Well Construction Details and Groundwater Level Measurements(September 2023)
- Table 2. Groundwater Monitoring Results (September 2023 and April 2024)
- Table 3. Historical Groundwater Monitoring Data
- Table 4. AOC T (TU544) Biosparge System Air Sparge Pressure Design

Attachments

- Attachment 3: Groundwater Sampling and Development Forms
- Attachment 4: Laboratory and Data Validation Reports
- Attachment 5: Field Notes, Well Diagram, Well Installation and Well Abandonment Forms
- Attachment 6: Soil Gas Sampling and Summa Cannister Operation SOPs

List of Acronyms

Acronym	Definition
%	percent
AAFES	Army and Air Force Exchange Service
ACQAP	Annual Contractor Quality Assurance Plan
AFCEC	Air Force Civil Engineer Center
AFCEE	Air Force Center for Environment Excellence
AOC	Area of Concern
AR	Administration Record
bgs	below ground surface
Bhate	Bhate Environmental Associates, Inc.
BSp	biosparge
BTEX	benzene, toluene, ethylbenzene, and total xylenes
CASE	Corrective Action System Evaluations
cfm	cubic feet per minute
СНММ	Certified Hazardous Materials Manager
СІН	Certified Industrial Hygienist
COR	Contracting Officer's Representative
CPR	cardiopulmonary resuscitation
CSM	Conceptual Site Model
CSP	Certified Safety Professional
CZRE	Environmental Restoration Division - East Region
DO	dissolved oxygen
DoD	Department of Defense
DQO	Data Quality Objective
ERPIMS	Environmental Resources Program Information Management System
ft	feet or foot
FPM	FPM Remediations, Inc.
GIS	Geographical Information System
GPR	Ground penetrating radar
H&S	Health and Safety
HAZWOPER	Hazardous Waste Operations and Emergency Response
ID	Identification
JBCA	Joint Base Charleston - Air
JD	Juris Doctor
Кос	Organic carbon-water patrician coefficient

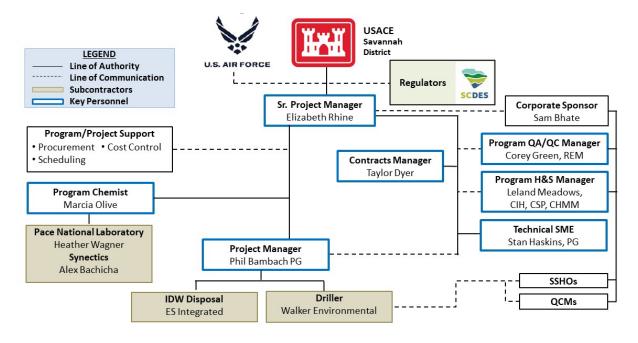
Acronym	Definition
LNAPL	Light non-aqueous phase liquid
μg/L	Micrograms per liter
mg/L	milligrams per liter
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NELAC	National Environmental Laboratory Accreditation Conference
NFA	No Further Action
OIHPT	Optical Image Profiler Hydraulic Profiling Tool
ORC	Optimized Remediation Contract
ORP	oxidation reduction potential
OSHA	Occupational Safety and Health Administration
РАН	polycyclic aromatic hydrocarbon
PG	Professional Geologist
рН	potential of hydrogen
PID	Photoionization detector
PM	Project Manager
ppm	Parts per million
psi	Per square inch
PVC	polyvinyl chloride
QA	Quality Assurance
QAPP	Quality Assurance Project Plan
QC	Quality Control
QCM	Quality Control Manager
RBSL	South Carolina Risk Based Screening Level
REM	Registered Environmental Manager
ROI	radius of influence
RPM	Remedial Project Manager
SC	South Carolina
SCDES	South Carolina Department of Environmental Services (previously SCDHEC)
SCDHEC	South Carolina Department of Health and Environmental Control
SIM	Selected Ion Monitoring
SME	Subject Matter Expert
SOP	Standard Operating Procedure
Sr.	Senior
SSHO	Site Safety and Health Officer

Acronym	Definition
SVOC	semi-volatile organic compound
TBD	to be determined
UIC	Underground Injection Control
U.S.	United States
USACE	United States Army Corps of Engineers
USAF	United States Air Force
USEPA	United States Environmental Protection Agency
UST	Underground storage tank

A3 DISTRIBUTION AND PROJECT ORGANIZATION LIST

The project organization and distribution list are provided in the table below.

Name	Title/Role from UST Master QAPP	Organization/Address	Telephone Number	E-mail Address
Erin Epperson	UST QAPP Coordinator	SCDES, UST Management Division	803-898-0634	
		2600 Bull Street	Fax: 803-898-0673	erin.epperson@des.sc.gov
		Columbia, South Carolina 29201		
Robert Dunn	SCDES Hydrogeologist III	SCDES, UST Management Division	803-898-0671	Robert.Dunn@des.sc.gov
		2600 Bull Street		
		Columbia, South Carolina 29201		
Shauna Stotler	USACE COR	100 W. Oglethorpe Avenue	912-438-7361	shauna.stotler@usace.army
		Savannah, Georgia 31401-3604		.mil
Laura Powers	JBCA RPM	AFCEC-JBCA	843-963-2701	laura.powers.3@us.af.mil
		203 S Davis Drive, Building 247 1 st Floor		
		Joint Base Charleston, South Carolina 29404-4707		
Phil Bambach	Bhate Installation PM	123 Timbergate Drive	614-226-9479	pbambach@bhate.com
PG 2893		Lexington, South Carolina 29073		
Expiration 6/30/25				
Elizabeth Rhine	Bhate ORC PM	305 Sasanqua Drive	864-982-9890	Erhine@bhate.com
		Greenville, South Carolina 29615		
Corey Green	Bhate Program QA/QC	1608 13th Avenue South, Suite 300	205-918-4002	cgreen@bhate.com
	Manager	Birmingham, Alabama 35205		
Caitlin Ryan	Bhate Field Staff	5724 Sablewood Street	205-260-9750	cryan@bhate.com
		North Charleston, South Carolina 29406		
Marcia Olive	Bhate Chemist	455 Union Blvd.	303-725-7631	molive@bhate.com
		Lakewood, Colorado 80228		
Ruth Welsh	Pace National Project	Pace Analytical National Center for Testing and	412-209-8995	ruth.welsh@pacelabs.com
	Manager II	Innovation Laboratory		
		120065 Lebanon Road		
		Mt. Juliet, Tennessee 37122		


TABLE 1A ADDENDUM DISTRIBUTION AND PROJECT ORGANIZATION LIST

Certification records will be provided at the request of SCDES.

A4 PROJECT ORGANIZATION

The project organization is provided in Figure 1 below.

FIGURE 1 PROJECT ORGANIZATION CHART

Notes: CHMM - Certified Hazardous Materials Manager; CIH - Certified Industrial Hygienist; CSP- Certified Safety Professional; H&S- Health and Safety; JBCA - Joint Base Charleston-Air; QCM- Quality Control Manager; REM - Registered Environmental Manager; SCDES - South Carolina Department of Environmental Services; SME – Subject Matter Expert; Sr. - Senior; SSHO - Site Safety and Health Officer; USACE - United States Army Corps of Engineers

A5 PROBLEM DEFINITION/BACKGROUND

Site TU544 is located adjacent to Building 129 at JBCA (**Figure 2**). The site consists of Coastal deposits (e.g., beach, tidal facies, and marsh) that is composed of clays and poorly-graded, finegrained sands. The Cooper Marl confining unit is evident at an approximate depth of 18 feet (ft) to 20 ft below ground surface (bgs) (FPM Remediations, Inc. [FMP], April 2022). Groundwater flow direction is to the southeast as shown on **Figure 3**.

The site is the location of a former 500-gallon diesel underground storage tank (UST) on the south side Building 129. The UST was removed in 1991, plus 18 cubic yards of soil. Benzene, toluene, ethylbenzene, and total xylenes (BTEX), methyl-tert-butyl ether, 2-methynaphthalene, naphthalene, and polycyclic aromatic hydrocarbons (PAHs) were identified as contaminants of potential concern in groundwater. Remedial actions completed since 1991 include passive skimmers, Vacuum Enhanced Fluid Recovery, Aggressive Fluid Vapor Recovery, and mobile biosparging (FPM, April 2022). Despite these activities, anerobic conditions persist and measurable light non-aqueous phase liquid (LNAPL) was 0.01 ft thick in MW-1-129 in May 2019 and 0.02 ft thick in MW-2R-129 in June 2020 (FMP, April 2022). LNAPL has not been observed in any well onsite since June 2020.

Groundwater sampling is conducted annually at monitoring well MW-1-129 (Attachment 3). In addition, water level data are collected from six active monitoring wells as summarized on **Table 1** and posted on **Figure 3**. As indicated on **Table 1**, the monitoring wells are relatively shallow (screened less than 16 ft bgs); however, the water table is above the top of the screened interval in each well. The general direction of groundwater flow is to the southeast. Naphthalene exceeded the South Carolina Risk-Based Screening Level (RBSL) of 25 micrograms per liter (μ g/L) in MW-1-129 in the former UST location during the September 2023 groundwater sampling event. The naphthalene result was 62 μ g/L using United States Environmental Protection Agency (USEPA) Method 8260D for volatile organic carbons (VOCs) and 32 μ g/L using USEPA Method 8270E with selected ion monitoring (SIM) for PAHs as summarized in **Table 2**.

Since 2016, naphthalene has been analyzed by USEPA Method 8260D and earlier methods appropriate for VOCs. While naphthalene is generally considered a semi-volatile organic compound (SVOC), it is the most volatile of the PAHs and can be detected using VOC methods. The variation in naphthalene results between methods can be attributed to the greater analytical sensitivity of the SIM method that focuses on specific ions of interest, which can enhance detection limits and reduce background noise. Other factors could include the ionization efficiency of naphthalene under conditions used in the SIM method, calibration and quality control differences, the SIM method's ability at handling more complex matrices leading to more consistent results for semi-volatile compounds like naphthalene, and the chromatographic conditions that can affect the retention time and resolution of naphthalene, potentially leading to differences in quantitation. Furthermore, the data do not suggest that the VOC method is more precise than the SVOC method; however, there is a discrepancy in the concentration. The historical data for both methods, where available, are summarized in Table 3. All other analytical results during the September 2023 sampling event were either below South Carolina RBSLs or non-detect in both normal and duplicate (MW-01-129-a) samples. The laboratory reports are included in Attachment 4.

MW-1-129 had previously been used for remediation activities including passive skimmers, Vacuum Enhanced Fluid Recovery, Aggressive Fluid Vapor Recovery, and mobile biosparging (FPM, April 2022); therefore, groundwater monitoring data collected from this well may not be representative of the aquifer. The original well was over drilled to remove all well materials and then backfilled with grout. The well was replaced on 25 March 2024 (MW-1R-129). The replacement well was installed approximately 4 ft east of the original well (Figure 2) to an original depth of 16.0 ft bgs but heaved during the installation to an actual depth of 13.5 bgs. Coincidently, the screen interval of 3.5-13.5' bgs is less likely to be submerged than the original 6-16' bgs, therefore, this well depth may actually prove to be more effective in monitoring the contaminants of concern than the original depth. The well was constructed of 2-inch polyvinyl chloride (PVC) riser with 10 ft of 0.010-inch machine slotted screen. Well construction details are included in Attachment 5. . MW-1R-129 was developed on 9 April 2024. Note the development logs indicate the potential of hydrogen (pH) is unusually high, which suggests grout contamination despite the well having 2-ft thick bentonite seal. A potential explanation for this unusually high pH is that the abandonment of MW-1-129 occurred within approximately 4 ft of the new well and the abandonment required overdrilling which left a large diameter hole in the ground which was backfilled with a large volume of grout. It is reasonable to conclude the high pH value recorded in the water at MW-1R-129 was due to the large volume of grout required to

abandon MW-1-129 located in close proximity to the new well. Well development logs are included in **Attachment 3**.

MW-1R-129 was purged and sampled for naphthalene only on 18 April 2024. The naphthalene result was 150 μ g/L using PAH USEPA Method 8270E SIM and 220 μ g/L using VOC USEPA Method 8260D (**Table 2**). The VOC results were consistently higher than the PAH results in both the September 2023 and April 2024 sampling data. The results from replacement well MW-1R-129 indicate naphthalene concentrations in groundwater are higher than anticipated based on samples collected from MW-1-129 (**Figure 4**).

The field duplicate samples, denoted with "-A" after the field sample identification in **Table 2**, were collected during the September 2023 and April 2024 sampling events and were analyzed for naphthalene by USEPA Methods 8260D and 8270E SIM as summarized on **Table 2**. The relative percent difference between each set of data was within the 30 percent (%) threshold; therefore, the data are considered valid. Furthermore, the data do not suggest that the VOC method is more precise than the SVOC method; however, there is a discrepancy in the concentration. The lab and validation reports for both sampling events are available in **Attachment 4**.

The conceptual site model for this site recognizes that the UST and approximately 18 cubic yards of the immediate impacted soil were removed in 1991. Due to the shallow water table, which historically ranged from 1.65 feet bgs to 8.71 feet bgs and averages 3.5 feet bgs, groundwater was directly impacted. Groundwater remedial actions to date have eliminated LNAPL and reduced contaminants to below South Carolina RBSLs with the exception of naphthalene, which persists at concentrations that exceed the RBSL of 25 µg/L. Analytical results from samples collected from monitoring well MW-1-129, which was utilized during prior groundwater remedial actions, underestimated the amount of naphthalene present in the aquifer. Results from groundwater collected from replacement well MW-1R-129 (installed with 4.25-inch diameter auger) provide a more accurate estimate of the residual mass. Since naphthalene has a strong affinity to adsorb to soil (i.e., the organic carbon-water patrician coefficient [Koc] is approximately 1,000), dissolved phase naphthalene is present at equilibrium with the sorbed mass. As an SVOC, naphthalene does not readily volatize during air sparging. However, bioremediation enhanced through biosparging and bioaugmentation is an effective technology for desorption and degradation of naphthalene (USEPA, July 2014) and is proposed at site TU544 to complete the remedial action to achieve the South Carolina RBSLs.

A6 PROJECT/TASK DESCRIPTION AND SCHEDULE

A focused biosparge (BSp) system is proposed to address the adsorbed naphthalene mass at the water table as well as the dissolved naphthalene concentrations in shallow groundwater with BSp wells designed specifically to deliver air to the remaining naphthalene mass. Ambient air will be injected into the groundwater below the naphthalene plume using an air compressor and injection wells. Increasing the dissolved oxygen (DO) will enhance aerobic bioremediation of the petroleum compounds by providing oxygen required by microorganisms to transform the organic contaminants into carbon dioxide, water, and microbial cell mass. Contact with contamination is key for this type of technology.

Treatment System Installation Activities

System installation will include the following subtasks:

- Completion of a SCDES Underground Injection Control (UIC) permit application
- Completion of an Air Force Form 332, Base Civil Engineering Work Clearance Request
- Conducting public/private utility locates to identify existing subsurface utilities/piping
- Installation of the proposed BSp wells
- Installation of the compressor and timer on the existing pad adjacent to MW-1R-129
- Installation of hoses connecting BSp wells with compressor

BSp Well and Vapor Point Monitoring Design/Specifications

Three, temporary vertical BSp wells will be installed using 4.25-inch diameter hollow stem augers for focused treatment of the remaining adsorbed and dissolved mass near MW-1R-129. The BSp well screen intervals will be 16 to 18 ft bgs, placing the top of the screen approximately 12 to 15 ft below the water table (depending on seasonal variations) and above the Cooper Marl confining clay layer.

The BSp wells will be installed on approximately 25-ft centers with each BSp well having a design radius of influence (ROI) of approximately 12 to 15 ft at the water table based on the depth of installation. BSp well locations are shown on **Figure 5**. Each BSp well will be drilled in the grass-covered area. The BSp well construction will be of 2-inch diameter PVC materials and consist of 2 ft of 0.010-inch slotted PVC screen and 16 ft of blank PVC riser. A 20/30 silica sand will be installed using tremie methods to approximately 1-foot above the well screen followed by a 5-foot thick bentonite seal. Upon adequate hydration, the remainder of the boring will be tremie grouted with bentonite-cement grout. The top of each BSp well will be completed with a threaded female well-head and male cap. Surface completions will consist of 12-inch diameter flush mount well vaults in concrete pads. Conveyance lines for connecting wells to the BSp compressor will be polyurethane compressed air hose laid on the ground and protected by construction fencing and/or traffic-rated cable ramps.

One vapor monitoring point (VMP-1-129) will be installed near Building 129, as shown on **Figure 5**, to monitor any vapor accumulations in the vadose zone. One boring will be hand augured to a depth of 2 ft. The vapor point will be constructed of 1-inch diameter PVC pipe and consist of 1 ft of 0.010-inch slotted PVC screen and 1 ft of blank PVC riser. A 20/30 silica sand will be installed around the screen and to 6-inches bgs. Hydrated bentonite chips will be placed in the annulus to surface. A cone will be placed over the vapor point until its abandoned.

Upon completion of BSp wells and vapor point installation, SCDES Form 1903 will be submitted to document each well installed. A well-construction diagram will be prepared for inclusion in the report.

Management of Soil Cuttings

Per conversations with SCDES, soil cuttings may be spread on the ground since the impacted soil was removed during UST closure. However, it may be inappropriate to spread cuttings due to foot traffic or weather. At the discretion of the geologist, soil cutting may be placed in a 55-gallon drum, labeled indicating a sample is out for analysis (e.g., site name, contact information, and

date sampled), transferred to the non-hazardous drum storage area near Building 692 on Range Road, and staged on wood pallets or impervious material. A grab sample will be collected and analyzed for BTEX by USEPA Method 8260D and naphthalene by USEPA Method 8270E SIM. Total compound analysis is generally acceptable for off-site disposal of soils contaminated with petroleum constituents. Additional analyses, such as pH (USEPA Method SW9045D), reactivity (SW9012B), corrosivity (USEPA Method 9034), and ignitability (USEPA Method 1030) may be required by the disposal facility. Final IDW disposal documentation, including laboratory reports and waste manifests, will be provided in the reports summarizing the implementation of this work plan.

BSp Equipment Setup and Operating Parameters

An electric Gast[®] oil-less piston compressor (or equivalent) that can deliver 6 cfm at 50 pounds per square inch (psi) will be used to supply air to the BSp wells. The compressor will be connected to an existing ground fault circuit interrupter outlet located at AOC T and placed near the BSp wells inside of an outdoor deck storage box for rain protection. A pressure regulator, pressure gauge, and flow meter will be used to set the flow rate in each individual conveyance line. The total design pressure, including both hydrostatic head and friction losses in piping, is 7.8 psi for 2 cfm per well (**Table 4**). A BSp compressor will need to provide a minimum of 6 cfm at 7.8 psi or a total of 9.4 psi with a 20% safety factor. This type of compressor operates with very little maintenance on a continuous basis. The planned operating cycle for the compressor is 2 hours on and 1 hour off. A temporary security fence will be placed around the BSp well and the compressed air hose will be located outside of the wooden fence enclosure adjacent to Building 129 (**Figure 5**).

The BSp system, operating at 6 cfm, will deliver approximately 90 pounds of oxygen per day to the subsurface, on the operating cycle proposed above at 16 hours per day of injection. A maximum of three BSp wells can operate simultaneously with the proposed compressor. Additional BSp wells may be added during the optimization period, if needed, and operate in series with the proposed cycle schedule.

System Startup and Bioaugmentation

Following installation of the temporary wells, the compressor will be connected to each well with compressed air hose. During the first 2-hour cycle, the pressure regulator, pressure gauge, and flow meter assembly will be used to set the air flow to each BSp well.

BSp wells will be operated at a flow rate of approximately 2 cubic ft per minute (cfm) with an on/off cycle of 2 hours on and 1 hour off. Cycles will be controlled by a mechanical timer. The DO levels will be measured in MW-1R-129 daily for the first 3 days of operation to ensure that concentrations remain above 2 milligrams per liter (mg/L). Injection cycle times will be operated for a period of 2 months and adjusted as needed to maintain a DO concentration of 2 mg/L. Cycling of the BSp is intended to prevent continuous channeling of the air through the soil matrix, to generate a more even distribution of air.

Prior to system startup, DO concentrations and depth to water will be measured in MW-1R-129 to document baseline conditions. Additionally, VOC concentration will be measured with a photoionization detector (PID) at the vapor point to establish baseline conditions.

After startup operations are complete and DO concentrations in groundwater from MW-1R-129 have increased to approximately 2 mg/L in monitoring well MW-1R-129, a mixture of Petrox[™] formulated specifically for diesel will be prepared and injected into the subsurface through the BSp wells. Petrox[™] is a freeze-dried strain of *pseudomonas* species and nutrients and arrives at the site in bags ready for hydration in a drum or tank. A 55-gallon drum will be filled with approximately 50 gallons of potable water. Petrox[™] will be added to the water and stirred thoroughly with a handheld paddle. Note that adding water to Petrox[™] will result in insufficient mixing and hinder the hydration process. The microbes will hydrate for approximately 8 hours. After hydration, the biosparge system will be shut down and each BSp well will be opened at the well-head. The hydrated microbial solution will be divided between each of the three BSp wells and will be poured into each well using a bucket and funnel. The BSp well-heads will be closed and the biosparge system restarted. The sparge air will be used to inject the solution into the subsurface. The addition of the microbes is expected to be a one-time event as the microbes will be an augmentation for continued microbial reproduction.

System Operation

Once per day during the first 3 days of operation, DO concentrations and depth to water will be measured in MW-1R-129 to verify the BSp system is operating as designed. Gauge readings of injection pressure and flow rate, as well as a PID measurements from the vapor point, will also be documented once per day during the first 3 days of operation. DO concentrations, depth to water, injection pressure, flow rates, and vapor point concentration will be recorded once per week for the duration of system operation.

In the event PID measurements at the vapor point exceed the Permissible Exposure Limit for naphthalene of 10 parts per million (ppm), the system will be shut down until a Summa cannister can be provided by the laboratory. The system will be temporarily restarted, and a grab sample from VMP-1-129 will be collected in the Summa cannister using USEPA SOP LSASDPROC-307-R5 included in **Attachment 6**. The system will be shut down following sample collection until the results of TO-15 analysis are provided by the laboratory. Once it has been determined it is safe to do so, biosparging will resume. If the results indicate the vapors pose a potential threat to the occupants of the building, the system will remain off and alternate remedial strategies will be evaluated.

Following 2 months of system operation, the system will be shut down for performance monitoring. If results meet South Carolina RBSLs for two consecutive sampling events 90 calendar days apart, the system will be removed. If the results exceed RBSLs, the system will continue operation for an additional 2 months; optimization strategies will be reviewed if necessary.

Activity	Organization	Days from QAPP Approval (Assuming 3/3/25)	Anticipated Start Date	Anticipated Completion Date
BSp well Installation	Bhate	+30 days through +31 days	4/4/25	4/3/25
BSp system operation	Bhate	+33 days through +94 days	4/5/25	6/5/25

A proposed schedule is summarized below:

Activity	Organization	Days from QAPP Approval (Assuming 3/3/25)	Anticipated Start Date	Anticipated Completion Date
Field Parameter Collection	Bhate	+33 days through +94 days	4/5/25	6/5/25
Performance Monitoring	Bhate	+108 days or two weeks after system is turned off	6/19/25	6/19/25
Quarterly Groundwater Sampling	Bhate	+200 days or three months after performance monitoring	9/19/25	9/19/25
Semi-Annual Reporting	Bhate	+290 days or three months after quarterly sampling	11/18/25	12/18/25
Re-start system and/or Optimization	Bhate	If required, prepare work plan addendum and implement	11/18/25	2/18/26
Quarterly Groundwater Sampling	Bhate	If required, three months after prior quarterly sampling	12/19/25	12/19/25
Quarterly Groundwater Sampling	Bhate	If required, three months after prior quarterly sampling	3/19/26	3/19/26
Semi-Annual Reporting	Bhate	If required, three months after last quarterly sampling	6/19/26	6/19/26

Performance Monitoring

Two weeks after ceasing the operation of the BSp system, performance monitoring will be conducted to evaluate the efficacy of the remedy. Performance monitoring will be conducted at monitoring wells MW-1R-129, MW-2R-129, and MW-5-129 for sampling completeness. The groundwater samples will be analyzed for naphthalene as outlined in UST Annual Contractor Quality Assurance Plan (ACQAP; Bhate, February 2024). Field measurements including DO will allow for evaluation of the ROI.

Groundwater monitoring will be performed in accordance with the *Quality Assurance Program Plan For The Underground Storage Tank Management Division* (South Carolina Department of Health and Environmental Control [SCDHEC], July 2020). Groundwater monitoring will commence 3 months after completion of BSp operation and be completed quarterly at three monitoring wells (MW-1R-129, MW-2R-129, and MW-5-129) (**Figure 5**) for a minimum of two sampling events. The groundwater samples will be analyzed by USEPA Method 8260D for BTEX and by USEPA Method 8270E SIM for naphthalene. Corrective Action System Evaluations (CASE) reports will be submitted on a semi-annual basis.

Management of Purge Water

Purge water will be stored in a 55-gallon drum staged in the non-hazardous drum storage area near Building 692 on Range Road and labeled indicating a sample is out for analysis (e.g., site name, contact information, and date sampled). For aqueous IDW generated during groundwater sampling, a summary table with the highest concentrations detected at each well will be used to determine the disposition of liquid IDW. In addition to BTEX (USEPA Method 8260D) and

naphthalene (USEPA Method 8270E SIM), the summary table should include pH (field measurement), chemical oxygen demand (Standard Method [SM]5220D), and biological oxygen demand (SM5210B). Although no hazardous waste is anticipated for activities at JBCA, Bhate will coordinate with the JBCA Hazardous Waste Program Manager to determine the proper disposal (e.g., non-hazardous or hazardous). Upon review and approval of the analytical data, the Base will coordinate with the City of North Charleston public works to approve discharge of IDW into the on-Base sewer located south of Building 692. No profile is required for IDW from groundwater development and sampling events.

Reporting

The analytical results will be presented in semiannual CASE reports. Additional details on groundwater monitoring, including recommended analysis and method numbers, are presented in Section B1 of the UST ACQAP Addendum (Bhate, February 2024).

In accordance with the Programmatic QAPP for the UST Management Division (SCDES, July 2020), No Further Action (NFA) decisions will be issued by the UST Management Division for UST releases where additional Site Rehabilitation actions are not required. An NFA is issued for release sites where each groundwater contaminant has decreased to the respective RBSL and post-remediation monitoring verifies the contaminants are below RBSLs for two consecutive sampling events.

Once the NFA is decision is made, a site restoration work plan will be prepared and implemented. During site restoration, monitoring wells will be abandoned in accordance with the well standards specified in South Carolina Regulation 61-71. Per the regulation, the pad, vault, and cover will be removed and the space filled with soil to level with the surrounding land surface. Bentonite-cement will be injected via tremie pipe starting at the bottom of the well and proceeding to the surface in one continuous operation. SCDES Form 1903 will be submitted for each well that is abandoned.

A7 DATA QUALITY OBJECTIVES (DQOS)

This Addendum supplements what has been provided in the UST ACQAP Addendum (Bhate, February 2024) based on the UST Division Programmatic QAPP Guide (SCDHEC, July 2020) on the DQO Process and is described below.

1	State the Problem	The Site is the location of a former 500-gallon diesel fuel UST which was removed from the south side of Building 129 in June 1991. The UST was used to supply diesel fuel to an emergency generator. A UST Closure Report prepared by D&S Services in 1991 documented the UST system removal activities (Air Force Center for Environment Excellence [AFCEE], June 1995). Inspection upon removal identified a small hole near the bottom of the tank. Approximately 18 cubic yards of soil were removed from the excavation pit beneath and along each side of the UST. Soil samples from the excavation indicated that additional site characterization was needed. A new 1,000-gallon aboveground storage tank was installed near the location of the former UST pre-1996.
		Naphthalene continued to exceed the South Carolina RBSL of 25 μ g/L in MW-1-129 in the former UST location. MW-1-129 was replaced (MW-1R-129), purged and sampled for naphthalene only on 18 April 2024. The PAH naphthalene result was 150 μ g/L and the VOC naphthalene result was 220 μ g/L. The VOC results were consistently higher than the PAH results in both the September 2023 and April 2024

		sampling events. The results indicate naphthalene concentrations are higher than expected and remedial action is required. The criteria for achieving No Further Action under the State UST Program is two consecutive quarters (or two sampling events more than 90 days apart) with all groundwater contaminants below RBSLs. When closure criteria have been met, a Well Abandonment Work Plan will be submitted to SCDES for concurrence. Upon concurrence, remaining monitoring wells will be abandoned.
2	ldentify the Goals of the Study	The goals of this study/remediation are to operate a biosparge system via specifically designed biosparge wells to create aerobic conditions, with bioaugmentation via the biosparge wells. This will be followed by system operation for approximately 60 days. Groundwater samples will then be collected quarterly from three wells to monitor aquifer conditions until concentrations are below South Carolina RBSLs for two consecutive quarters to achieve NFA determination and Site Closeout.
3	ldentify Inputs to the Study	Biosparge – Groundwater field parameters will be collected including temperature, pH, DO, oxidation reduction potential (ORP), specific conductance, and turbidity. Field parameters will be monitored daily for the first three days and then weekly for the next two months while the system is in operation.
		Bioaugmentation - Once DO greater than 2 mg/L is achieved, inject Petrox [™] culture into biosparge wells.
		Performance Monitoring - Collect groundwater samples from MW-1R-129, MW-2R-129, and MW-5-129. Currently, only MW-1R-129 is sampled; adding other existing wells for completeness.
4	Define Site Boundaries	The anticipated area of investigation will be confined to the shallow groundwater in the grassy area southeast of Building 129 (Figure 5). Groundwater at the site is approximately 3.5 ft below top of casing and the vertical extent of contamination is anticipated to be no deeper than approximately 14 ft bgs. Biosparge wells will be screened at depth of approximately 16-18 ft bgs or just above the confining unit in order to obtain the largest ROI at the water table. There are significant underground utility concerns. A third-party ground penetrating radar (GPR) subcontractor will be used in conjunction with the Dig Permit process. This approach does not require removal of the existing pad on site.
5	Analytical Approach/ Decision Rule (Develop the Analytic Approach)	 Groundwater analysis will include BTEX and naphthalene by USEPA Method 8260D and naphthalene by USEPA Method 82670E SIM. Groundwater field parameters will also be collected including temperature, pH, DO, ORP, specific conductance, and turbidity. Vapor monitoring will be conducted via a vapor point placed between the biosparge wells and the building with a PID to evaluate potential for vapor intrusion. If PID readings are elevated (e.g., greater than 10 ppm), a sample will be collected using a Summa cannister and analyzed for VOCs by USEPA Method TO-15.

6	Specify Performance and Acceptance Criteria	 The performance and acceptance criteria will support No Further Action criteria. The Program QA/QC Manager or designee will verify field procedures are properly followed through field audits; any deviations will be promptly communicated, addressed, and documented. Analytical laboratories will carry current Department of Defense (DoD) Environmental Laboratory Accreditation Program certification and South Carolina required accreditations; laboratory accreditation is documented in the 2024 ACQAP (Bhate, February 2024) and will be provided upon request. Turbidity will be less than 10 Nephelometric Turbidity Units or the well will be redeveloped and sampled. Groundwater data will be compared to the South Carolina RBSLs.
7	Develop the Plan for Obtaining Data	Three biosparge wells will be installed. The wells will be on 25-foot centers with an anticipated 15 ft ROI; overlap at the water table. The screened interval will be 16-18 ft bgs to maximize the ROI. Utility clearance will be required including both private GPR and dig permit. The wooden privacy fence onsite can be worked around. A vapor monitoring point will be installed using a hand auger to 2 ft bgs and will consist of 1 ft of screen and 1 ft of riser. A mobile biosparge unit will be installed which requires 110 Volt electrical service. The electrical lines run across the ground. A temporary fence may be installed to protect the system.

A8 TRAINING AND CERTIFICATION

Training

All personnel will have training and documentation in accordance with the JBCA Basewide Accident Prevention Plan (Bhate, September 2023). All personnel will have a minimum of the 40-hour Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and Emergency Response (HAZWOPER) training and subsequent 8-hour refreshers, when applicable. Personnel will also have first aid, cardiopulmonary resuscitation (CPR), and bloodborne pathogen training.

Personnel	40-hour OSHA HAZWOPER	8-hour OSHA HAZWOPER Refreshers	CPR/First Aid/Bloodborne Pathogens
Caitlin Ryan	\checkmark	\checkmark	\checkmark
Phil Bambach	\checkmark	✓	\checkmark

Laboratory Certification

Full Name of the Laboratory (analyses in Attachment 4): Pace Analytical Services, LLC Name of Lab Director: Sudhip Pradham

Laboratory ID: <u>32010</u> SCDES Certification Number 32010001 SCDES Certification Expiration: <u>5/12/2027</u> Laboratory Contact Information: Pace Analytical Services, LLC – Kathy Smith 106 Vantage Point Drive West Columbia, South Carolina 29172 (803) 791-9700

Kathy.Smith@pacelabs.com

Full Name of the Laboratory (future analyses): Pace Analytical <u>National Center</u> Name of Lab Director: <u>Chris Johnson</u> Laboratory ID: <u>32010</u> SCDES Certification Number: <u>84004002</u>_____SCDES Certification Expiration: 6/30/24; extended by administrative review of application by SCDES on 10/23/24 Laboratory Contact Information: <u>Pace National – Ruth Welsh, Project Manager</u> <u>Mt. Juliet, Tennessee</u> <u>T:</u> 412-209-8995 Ruth.Welsh@pacelabs.com *Laboratory Standard Operating Procedures*

Laboratory Standard Operating Procedures (SOPs) are provided as Appendix E in the 2024 ACQAP (Bhate, February 2024) and may be provided with this addendum at the request of SCDES.

A9 DOCUMENTS AND RECORDS

Personnel will receive the most current version of the QAPP Contractor Addendum via:

(Check all that apply)

_____FedEx _____Courier _____Hand delivered <u><- Electronically</u> Other

The following table provides a list of records and how they will be retained, stored, and archived.

Record	Produced By	Hardcopy/ Electronic	Storage Location For how long?	Archival
Field Notes/ Field Forms/ Logbook	Bhate	Hardcopy/ Electronic; field forms are completed electronically	Bhate, Birmingham, Alabama Minimum of 5 years	United States Air Force (USAF) Administrative Record (AR)
Chain-of-Custody forms	Bhate	Hardcopy/ Electronic	Bhate, Birmingham, Alabama Minimum of 5 years	USAF AR
Raw laboratory data package	Pace Analytical, South Carolina and Pace National, Tennessee	Electronic	Bhate, Birmingham, Alabama Minimum of 5 years	USAF AR
Audit/assessment checklists/reports	Bhate/Pace Analytical, South Carolina and Pace National, Tennessee	Electronic	Bhate, Birmingham, Alabama Minimum of 5 years	USAF AR
Work Plans	Bhate/ Synectics	Hardcopy/ Electronic	Bhate, Birmingham, Alabama Minimum of 5 years SCDES, Columbia, South Carolina Minimum of 5 years	USAF AR SCDES
Key	Bhate/USAF USAF/SCDES	Electronic	Bhate, Birmingham, Alabama Minimum of 5 years	USAF AR SCDES
Correspondence Validated data	Bhate/Synectics	Electronic	Bhate, Birmingham, Alabama Minimum of 5 years	USAF AR
CASE Reports	Bhate	Hardcopy/ Electronic	Bhate, Birmingham, Alabama Minimum of 5 years; SCDES, Columbia, South Carolina Minimum of 5 years	USAF AR SCDES

 TABLE 2A RECORD IDENTIFICATION, STORAGE, AND DISPOSAL

REFERENCES

AFCEE. June 1995. Statement of Work (SOW) for Site Characterization at Buildings 401, 551, 1595, 129, 900, 1800 and AAFES Shoppette and Site Restoration Via Soil Ventilation and Air Sparging at AAFES Shoppette Located Charleston Air Force Base, South Carolina

Bhate. February 2024. 2024 Annual Contractor Quality Assurance Plan (SCDHEC UST Program), Joint Base Charleston – Air, South Carolina.

Bhate. September 2023. Final Revision 1, Basewide Accident Prevention Plan, Optimized Remediation Contract, Joint Base Charleston – Air. (Appendix A of the Basewide Uniform Federal Policy – Quality Assurance Project Plan, Optimized Remediation Contract, Joint Base Charleston – Air, South Carolina [Bhate, January 2024]).

FPM. April 2022. Semiannual Corrective Action System Evaluation (CASE) Review, AOC T (TU544) Building 129. Joint Base Charleston – Air, South Carolina.

SCDHEC. July 2020. *Quality Assurance Program Plan For The Underground Storage Tank Management Division.*

USEPA Laboratory Services & Applied Science Division. April 2023. *Groundwater Sampling.* LSASDPROC-301-R6.

USEPA. July 2014. Scoping and Problem Formulation for the Identification of Potential Health Hazards for the Integrated Risk Information System (IRIS) Toxicological Review of Naphthalene.

SECTION B: MEASUREMENT/DATA ACQUISITION

B1 SAMPLING PROCESS/EXPERIMENTAL DESIGN

The project schedule is provided in the table below.

TABLE 3A SAMPLING ACTIVITIES

Task	Frequency	Start Date	End Date	Comments
Groundwater Sampling	Quarterly, until concentrations are below South Carolina RBSLs for two consecutive quarters	March 2025	To Be Determined	Initial performance monitoring sampling and then followed by quarterly sampling

B2 SAMPLING METHODS

Event	Matrix	Sampling Method	Number of Wells to be Sampled/ Well ID(s)	QA/QC Samples		
Site-wide sampling to verify CSM	Aqueous (groundwater)	Low-flow groundwater sampling (LSASDPROC- 301-R6; USEPA, April 2023)	MW-1R-129 MW-2R-129 MW-5-129	Field Blank: Daily Field Duplicates: 5% MS/MSD: 5% Trip Blanks: 1 Per Cooler Reusable sampling equipment will not be used. Should a reusable sampling device be used, an equipment blank is required to be collected for each day of use.		
Notes: % - per	lotes: % - percent, MS/MSD – matrix spike/matrix spike duplicate					

The samples will be: _____ Grab____ Homogenized ____Split

Discrete, grab groundwater samples will be collected from monitoring wells using the low-flow purge method in accordance with the ACQAP (Bhate, February 2024), which references standard operating procedure LSASDPROC-301-R6 (USEPA, April 2023). A peristaltic pump with new polyethylene tubing will be used to purge and sample groundwater.

Should issues be encountered in the field, they should be resolved and the corrective action should be documented as indicated in the table below.

Failure	Response	Documentation	Individual Responsible
Field Equipment	Notify Bhate PM and replace equipment	Daily Field Log	Caitlin Ryan/Bhate Field Staff
Safety Issues	Proceed in accordance with the Base Accident Prevention Plan and notify Bhate PM and Bhate H&S Manager, when applicable	Daily Field Log	Caitlin Ryan or Phil Bambach/Bhate Field Staff
Access Issues	Notify Bhate PM and contact JBCA RPM	Daily Field Log	Caitlin Ryan/Bhate Field Staff
Wells Not Found	Geographical Information System (GIS) Coordinates Metal detector and measurements from known points if needed and notify Bhate PM	Daily Field Log	Caitlin Ryan/Bhate Field Staff
Sampling Issues	Notify Bhate PM and follow SOP corrective action. May need to re-sample.	Daily Field Log	Caitlin Ryan/Bhate Field Staff

TABLE 4A FIELD CORRECTIVE ACTION

B3 SAMPLE HANDLING AND CUSTODY

- 1. How will the samples get from the Site to the Lab to ensure holding requirements are met? <u>Samples will be packed on ice and sent via FedEx overnight, direct delivery from Bhate</u> <u>personnel to the lab, or lab personnel will pick up.</u>
- 2. If sample preservation procedures differ from the UST Programmatic QAPP, please provide details. <u>No revisions required.</u>
- 3. If chain of custody procedures differ from the UST Programmatic QAPP, please provide details. <u>No revisions required.</u>

B4 ANALYTICAL METHODS

BTEX and naphthalene will be analyzed using USEPA Method 8260D in accordance with the UST Programmatic QAPP. Based on the logic presented in Section A5, naphthalene will also be analyzed using USEPA Method 8270E SIM.

1. Identify the method which the SOP references and the equipment or instrumentation that is needed:

TABLE 5A ANALYTICAL SOPS AND REFERENCED METHODS

PARAMETER	METHOD REFERENCED	EQUIPMENT/ INSTRUMENTATION	LABORATORY SOP
BTEX/ Naphthalene	8260D	Gas Chromatograph / Mass Spectrometer	ENV-SOP-WCOL-0107
Naphthalene	8270E SIM	Gas Chromatograph / Mass Spectrometer	ENV-SOP-WCOL-0102

2. Provide SOPs for the Kerr Method or the Ferrous Iron Method if these are parameters for this study. This can be attached or written here. If attached, please note that it is an attachment and where it is located (if applicable). Not Applicable.

B5 QUALITY CONTROL REQUIREMENTS

All QC will follow the requirements laid out in Section B5 of the UST Programmatic QAPP.

B6 FIELD INSTRUMENT AND EQUIPMENT TESTING, INSPECTION, AND MAINTENANCE

The table below identifies the field equipment needing periodic maintenance, the schedule for this, and the person responsible.

Instrument	Serial Number	Type of Maintenance	Frequency	Person responsible		
Sampling Equipment (PIDs, water quality meters, pumps, etc.)	To be determined (Rental)	To be completed by the rental company	As required per the manufacturer's instructions	Rental company If equipment fails, the rental company will replace it.		

TABLE 6A INSTRUMENT AND EQUIPMENT MAINTENANCE

B7 INSTRUMENT CALIBRATION AND FREQUENCY

The table below identifies the calibration criteria, the schedule for this, how deficiencies should be resolved, and the person responsible for corrective action.

Instrument	Serial Number	Frequency of Calibration	Calibration Procedure and Documentation	Acceptance Criteria	Corrective Action	Person Responsible
PID Water Quality Meters	To be determined (Rental)	Daily (start and end of day)	Per manufacturer's instructions/ Calibration Form and Field Log Book	Per manufacturer's instructions	If re- calibration does not fall within the acceptance criteria, the meter will need to be	Field Staff will coordinate with the rental company for assistance or replacement

B8 INSPECTION/ACCEPTANCE REQUIREMENTS FOR SUPPLIES AND CONSUMABLES

1. The procedures for storage, handling or transport of supplies/consumables will be consistent with the UST Programmatic QAPP.

and notify

the PM.

replaced.

B9 DATA ACQUISITION REQUIREMENTS (NON-DIRECT MEASUREMENTS)

This section discusses data that was not generated by this project.

Data Source	Used for	Justification for use in this project	Comments
Historical documents from the Administrative Record	CSM development/updates, historical laboratory results, and well construction details (including GIS data)	Required data to develop accurate CSM and remediation effectiveness assessment	It is assumed that information provided in the ERPIMS database and documents stored in the Administrative Record are correct

TABLE 8A NON-DIRECT MEASUREMENTS

B10 DATA MANAGEMENT

Synectics Inc., will provide event planning, QA oversight, electronic data management, data validation, and Environmental Resources Program Information Management System (ERPIMS) submittals. The data management procedures outlined in the ACQAP (Bhate, February 2024) will be followed for this site-specific work plan.

SECTION C: ASSESSMENT AND OVERSIGHT

C1 ASSESSMENT AND RESPONSE ACTIONS

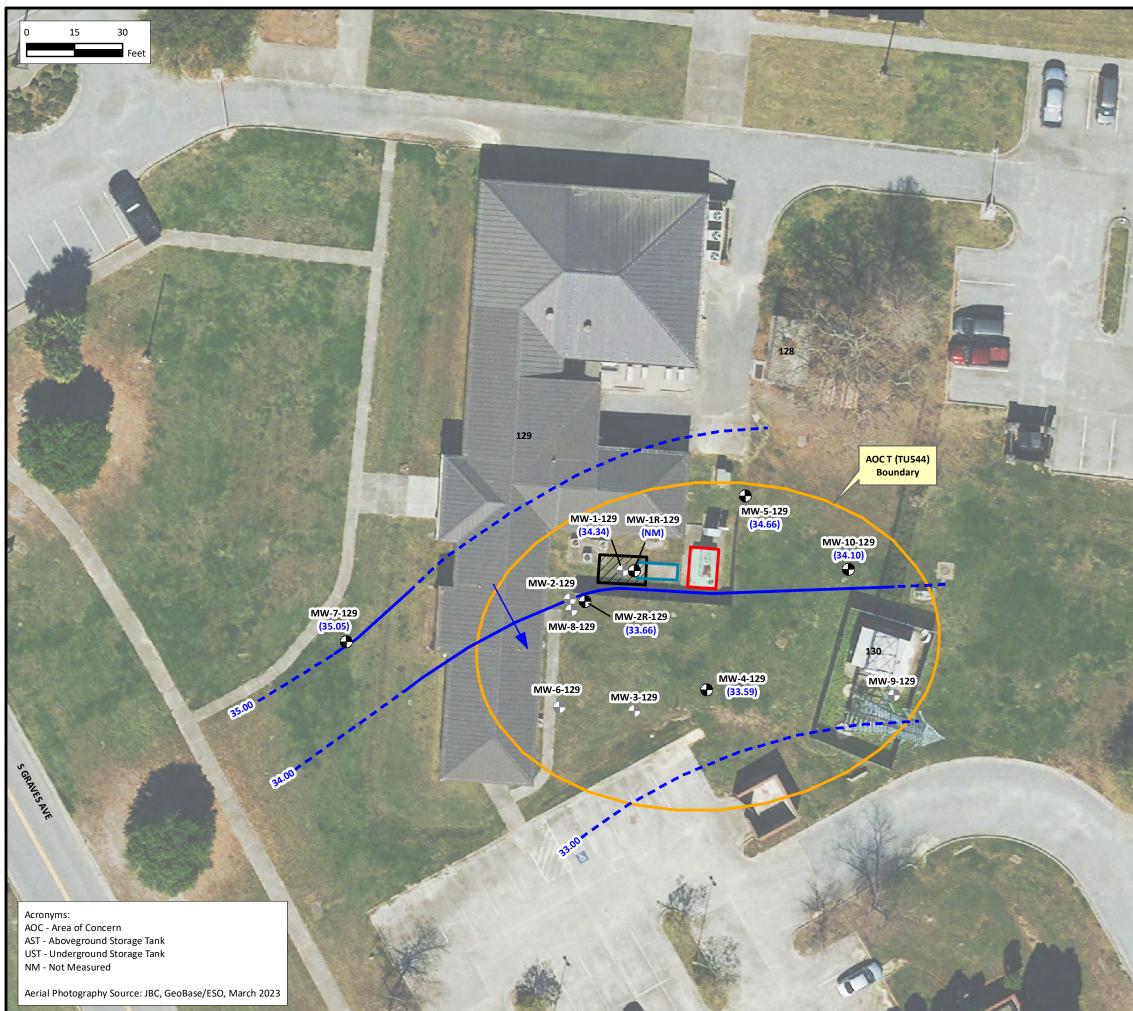
1. The Contractor is supposed to observe field personnel daily during sampling activities to ensure samples are collected and handled properly and report problems to SCDES within 24 hours. Please state who is responsible for doing this, what observations will be made, and how those observations will be made. Will this person have the authority to stop work if severe problems are seen?

The field leader (Caitlin Ryan) will be responsible for observing sampling activities and reporting any issues to the Bhate ORC PM. The Bhate ORC PM will notify USACE/JBCA and JBCA will notify SCDES within 24 hours. All field staff and subcontractors have stop work authority and will notify the field leader of any issues observed.

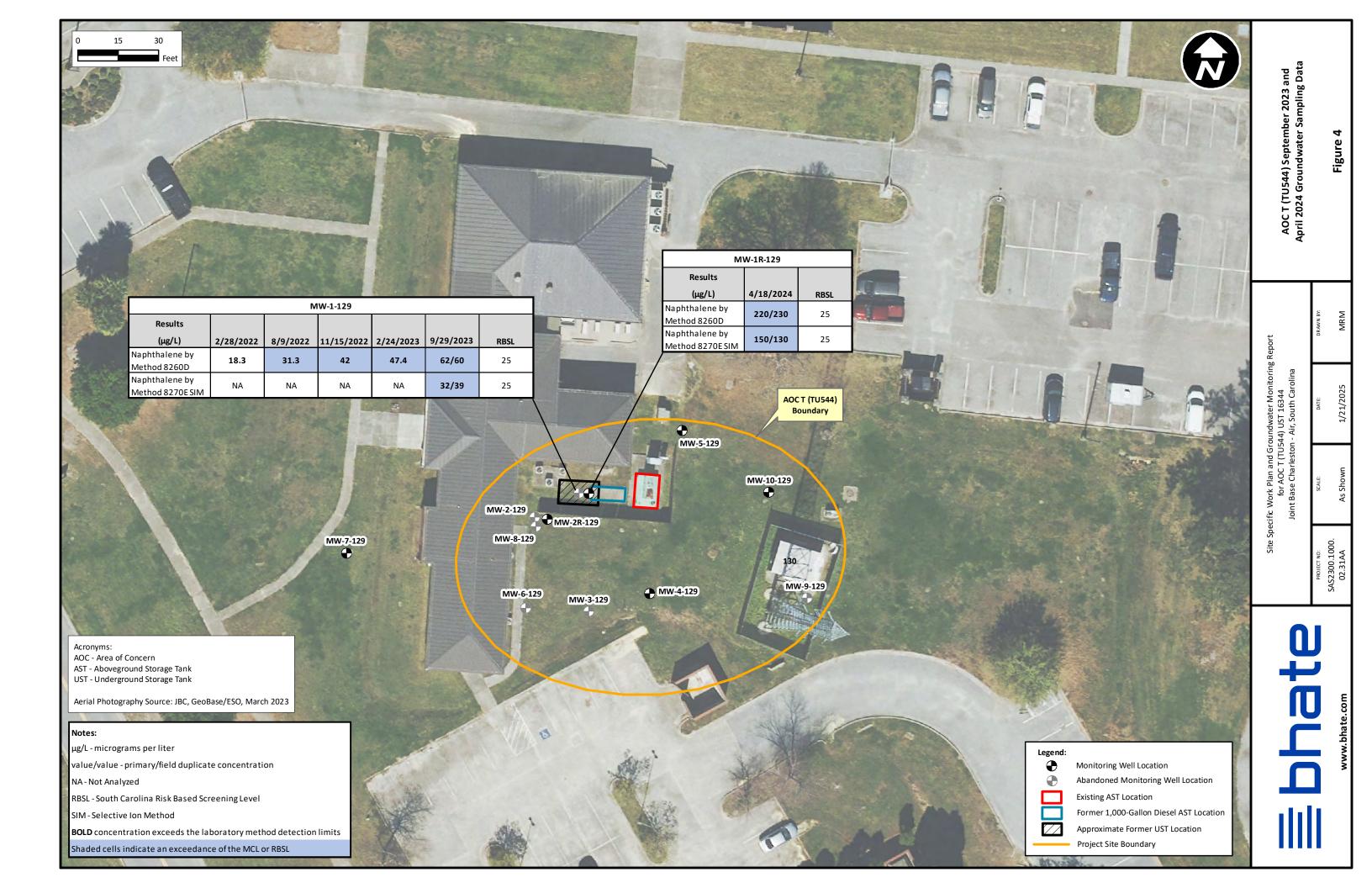
2. The SCDHEC UST Programmatic QAPP states that the Lab will receive an Off-site Technical System Audit. For this project, what assessments will be done by the Contractor on the Commercial Lab(s) that are being used—other than their certification audit? When or how often are these done? Who will the results be given to and who has the ability to stop work if problems are severe?

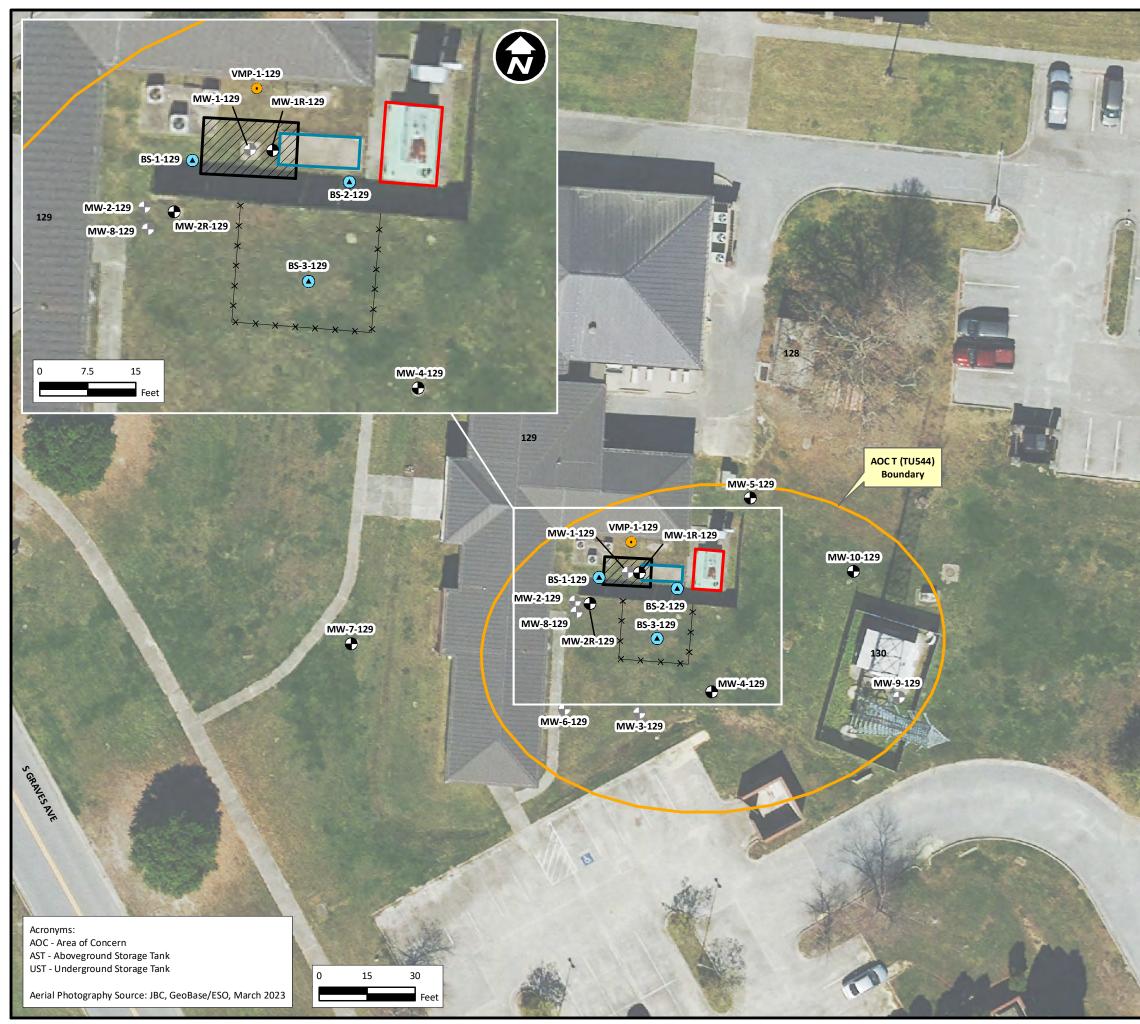
The Laboratory is audited by clients, the DoD Environmental Laboratory Approval Program, and the National Environmental Laboratory Accreditation Conference (NELAC). DoD and NELAC audits are conducted a minimum of every 2 years. Client audits do not have a schedule, but typically occur at the beginning of certain projects followed by periodic audits as needed. The results of these audits are provided to the Laboratory. Client audits are made available to the Laboratory and appropriate staff within the client's organization. The Laboratory Director and QA Officer have the ability to stop work if problems are severe. Desk audits of laboratory SOPs, method detection limits, and demonstration of capability are performed by SCDES annually. The Bhate Program Chemist shall be responsible for conducting thorough reviews of the data and evaluating its accuracy, precision, and usability for the project.

C2 REPORTS TO MANAGEMENT


The procedures outlined in the ACQAP (Bhate, February 2024) will be followed for this site-specific work plan.

SECTION D: DATA VALIDATION AND USABILITY


The data validation and usability procedures and criteria outlined in the ACQAP (Bhate, February 2024) will be followed for this site-specific work plan.


FIGURES

		AOC T (TU544) Potentiometric Surface (September 2023)	Figure 3
		Report	drawn by: MRM
1		ific Work Plan and Groundwater Monitoring for AOC T (TU544) UST 16344 Joint Base Charleston - Air, South Carolina	^{рате:} 1/14/2025
		Site Specific Work Plan and Groundwater Monitoring Report for AOC T (TU544) UST 16344 Joint Base Charleston - Air, South Carolina	scale: As Shown
		Site Spe	PROJECT NO: SAS2300.1000. 02.31AA
Legend:	Monitoring Well Location	d d	J
(34.34)	Abandoned Monitoring Well Location Potentiometric Surface Elevation North American Vertical Datum (NAVD88) Potentiometric Surface Contour (Dashed Where Inferred)	ר ר ר	www.bhate.com
	Approximate Groundwater Flow Direction Existing AST Location Former 1,000-Gallon Diesel AST Location Approximate Former UST Location Project Site Boundary	i	

	AOC T (TU544) Biosparge Well Locations	Figure 5
	Report	drawn by: MRM
	ific Work Plan and Groundwater Monitoring Report for AOC T (TU544) UST 16344 Joint Base Charleston - Air, South Carolina	DMTE: 1/14/2025
		scale: As Shown
	Site Specific Joi	РКОЈЕСТ NO: SAS2300.1000. 02.31AA
Legend: Proposed Biosparge Well Location Proposed Vapor Monitoring Point Monitoring Well Location Monitoring Well Location Abandoned Monitoring Well Location Existing AST Location Existing AST Location Former 1,000-Gallon Diesel AST Location Approximate Former UST Location Approximate Former UST Location Project Site Boundary 	atedd 🗐	www.bhate.com

<u>TABLES</u>

Table 1

Monitoring Well Construction Details and Groundwater Level Measurements (September 2023) Groundwater Monitoring Report and Site-Specific Work Plan for AOC T (TU544) Joint Base Charleston - Air, South Carolina

Location	Northing (ft NAD 83)	Easting (ft NAD 83)	Elevation (ft NAVD 88)	Reported Well Depth (feet btoc)	Screen Interval (ft btoc)	Depth to Water (ft btoc)	Date Measured	Groundwater Elevation (ft NAVD 88)
MW-1-129	388,223.3913	2,290,854.5253	36.64	15.91	6-16	2.30	9/29/2023	34.34
MW-2R-129-1	388,210.4500	2,290,833.5000	35.96	14.8	4.3-14.3	2.30	9/29/2023	33.66
MW-4-129	388186.1442	2290880.7645	36.23	16.5	6-16	2.64	9/29/2023	33.59
MW-5-129	388246.6423	2290892.8636	36.42	16.5	6-16	1.76	9/29/2023	34.66
MW-7-129	388201.0410	2290768.0660	36.17	15.5	5-15	1.12	9/29/2023	35.05
MW-10-129	388223.7911	2290925.0846	36.10	14.30	3.81-13.81	2.00	9/29/2023	34.10

Notes:

btoc - below top of casing

ft - feet

NAD 83 - North American Datum of 1983; National Adjustment of 2011

NAVD 88 - North American Vertical Data of 1988

NA - Not available, well had not yet been surveyed at the time of this report

Table 2

Groundwater Monitoring Results (September 2023 and April 2024) Groundwater Monitoring Report and Site-Specific Work Plan for AOC T (TU544) Joint Base Charleston Air, South Carolina

Location ID:		MW-	·1-129	MW-1	R-129
Field Sample ID:		MW-1-129_0923	MW-1-129_0923-a	TU544_MW-1R- 129_0424	TU544_MW-1R- 129_0424-a
Lab Sample ID:		YI30001-017	YI30001-018	ZD22015-001	ZD22015-002
Sample Date:		9/29/2023	9/29/2023	4/18/2024	4/18/2024
Sample Type:		Ν	FD	Ν	FD
Sample Depth Interval (feet):		6.00 - 16.00	6.00 - 16.00	3.50 - 13.50	3.50 - 13.50
VOCs by Method 8260D (μg/L)	RBSL				
Naphthalene	25	62	60	220	230
PAHs by Method 8270E SIM (µg/L)	RBSL				
Naphthalene	25	32	30	150	130
Field Parameters					
Temperature (degrees Celcius)	NV	22.3	22.3	19.5	19.5
Dissolved Oxygen (mg/L)	NV	0.25	0.25	0.15	0.15
pH (standard units)	NV	5.87	5.87	10.6	10.6
ORP (mVolts)	NV	-46.3	-46.3	-260	-260
Specific Conductance (mS/cm)	NV	0.107	0.107	0.181	0.181
Turbidity (NTUs)	NV	1.69	1.69	6.76	6.76

Notes:

Detected analytes are in bold

Results highlighted in blue exceed the RBSL.

AOC = Area of Concern

FD = Field Duplicate

MCL = Maximum Contaminant Level

N = Normal Environmental Sample

NA = Not Analyzed

NV = No Value

PAH = Polycyclic Aromatic Hydrocarbons

RBSL = South Carolina Risk Based Screening Level

VOC = Volatile Organic Compound

Non-detect values are reported to the Limit of Detection or Limit of Quantitation, as defined during data validation.

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172

Units:

 μ g/L = micrograms per liter

mg/L = milligrams per liter

mS/cm - milliSiemens per centimeter

mV = milliVolt

NTUs = Nepthalmetric Turbidity Units

,,,												
Location ID:							MW-1-129					
Field Sample ID:		MW-1-129										
Lab Sample ID:		J1100784-002	21205031302	21304114904	FA21793-4	FA36254-6	FA44581-7	FA48060-9	FA49907-8	FA52436-3	FA55076-6	FA57983-4
Sample Date:		2/21/2011	5/2/2012	4/10/2013	1/29/2015	8/16/2016	6/2/2017	9/25/2017	12/5/2017	3/13/2018	6/14/2018	9/25/2018
Sample Type:		N	N	N	N	N	N	N	N	N	N	N
Sample Depth Interval (feet):		6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00
VOCs by Method 8260D (µg/L)	MCL	0.00 10.00					0.00 10.00					0.000
Benzene	5	0.96	0.285	0.111 U	0.5 U	0.38	NA	NA	NA	NA	NA	NA
Ethylbenzene	700	22	1.9	2.46	11.8	34.3	NA	NA	NA	NA	NA	NA
m,p-Xylene	NV	33	NA									
Methyl tert-butyl ether (MTBE)	NV	0.14 U	0.06 U	0.078 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA
Naphthalene	25*	130	52.6	34.8	91.4	145	172	122	80.3	62.9	103	77.4
o-Xylene	NV	9.4	NA									
Toluene	1,000	0.49	0.127 U	0.122 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA
Xylenes, Total	10,000	NA	8.16	3.89	21.9	23.2	NA	NA	NA	NA	NA	NA
PAHs by Method 8270E SIM (µg/L)	MCL											
1-Methylnaphthalene	NV	86	0.408	34	31.1	NA						
2-Methylnaphthalene	NV	96	0.446	22	33.2	NA						
Acenaphthene	NV	3.2	0.985	3.9	1.6	NA						
Acenaphthylene	NV	0.077 U	0.07 U	0.692	0.43 U	NA						
Anthracene	NV	0.077 U	0.024 U	0.02 U	0.32	NA						
Benzo(a)anthracene	NV	0.068 U	0.059 U	0.107	0.043 U	NA						
Benzo(a)pyrene	0.2	0.055 U	0.023 U	0.05	0.043 U	NA						
Benzo(b)fluoranthene	NV	0.069 U	0.018 U	0.0043 U	0.043 U	NA						
Benzo(g,h,i)perylene	NV	0.064 U	0.036 U	0.079	0.043 U	NA						
Benzo(k)fluoranthene	NV	0.077 U	0.039 U	0.075	0.043 U	NA						
Chrysene	NV	0.074 U	0.018 U	0.218	0.087 U	NA						
Dibenz(a,h)anthracene	NV	0.058 U	0.035 U	0.09	0.043 U	NA						
Fluoranthene	NV	0.089 U	0.04 U	0.151	0.43 U	NA						
Fluorene	NV	5.8	0.204	5.31	3.4	NA						
Indeno(1,2,3-c,d)pyrene	NV	0.063 U	0.04 U	0.073	0.043 U	NA						
Naphthalene	25*	84	4.41	14.1	37	NA						
Phenanthrene	NV	5.4	0.028 U	4.32	3.5	NA						
Pyrene	NV	0.096	0.305	0.232	0.43 U	NA						

Units

µg/L = micrograms/Liter

Notes

FD = Field Duplicate

ID = Identification

MCL = Maximum Contaminant Level N = Normal Environmental Sample

NA = Not Analyzed

NV = No Value

PAH = Polycyclic Aromatic Hydrocarbon *RBSL = Risk Based Screening Level

Detected analytes are indicated in bold.

Results highlighted in grey exceed the MCL

Results highlighted in blue exceed the RBSL

Qualifier

Location ID:							MW-1-129					
Field Sample ID:		MW-1-129	MW-10-129	MW-1-129								
Lab Sample ID:		FA59885-4	FA62319-3	FA64647-3	FA67552-4	FA62319-4	FA69910-4	FA72991-5	FA75552-3	FA78697-3	FA81666-7	FA84062-3
Sample Date:		12/4/2018	3/13/2019	5/30/2019	8/26/2019	3/13/2019	11/12/2019	2/28/2020	6/2/2020	9/9/2020	12/10/2020	3/18/2021
Sample Type:		N	N	N	N	N	N	N	N	N	N	N
Sample Depth Interval (feet):		6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	4.50 - 14.50	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00
VOCs by Method 8260D (µg/L)	MCL	0.00 10.00	0.00 10.00	0.00 10.00	0.00 10.00	1.00 11.00	0.00 10.00	0.00 10.00	0.00 10.00	0.00 10.00	0.00 10.00	0.00 10.00
Benzene	5	NA										
Ethylbenzene	700	NA										
m,p-Xylene	NV	NA										
Methyl tert-butyl ether (MTBE)	NV	NA										
Naphthalene	25*	71.7	2 U	64.1	35	95.2	9	31.6	73	13.5	24.4	11.5
o-Xylene	NV	NA										
Toluene	1,000	NA										
Xylenes, Total	10,000	NA										
PAHs by Method 8270E SIM (µg/L)	MCL											
1-Methylnaphthalene	NV	NA										
2-Methylnaphthalene	NV	NA										
Acenaphthene	NV	NA										
Acenaphthylene	NV	NA										
Anthracene	NV	NA										
Benzo(a)anthracene	NV	NA										
Benzo(a)pyrene	0.2	NA										
Benzo(b)fluoranthene	NV	NA										
Benzo(g,h,i)perylene	NV	NA										
Benzo(k)fluoranthene	NV	NA										
Chrysene	NV	NA										
Dibenz(a,h)anthracene	NV	NA										
Fluoranthene	NV	NA										
Fluorene	NV	NA										
Indeno(1,2,3-c,d)pyrene	NV	NA										
Naphthalene	25*	NA										
Phenanthrene	NV	NA										
Pyrene	NV	NA										

Units

µg/L = micrograms/Liter

Notes

FD = Field Duplicate

ID = Identification

MCL = Maximum Contaminant Level

N = Normal Environmental Sample

NA = Not Analyzed NV = No Value

PAH = Polycyclic Aromatic Hydrocarbon *RBSL = Risk Based Screening Level

Detected analytes are indicated in bold.

Results highlighted in grey exceed the MCL

Results highlighted in blue exceed the RBSL

Qualifier

Location ID:					MW-1-129					MW-2	R-129	
Field Sample ID:		MW-1-129	MW-1-129_Q321	MW-1-129_Q421	MW-1-129	MW-1-129	MW-1-129	MW-1-129	MW-2R-129	MW-2R-129Dup	MW-2R-129	MW-2R-129(2)
Lab Sample ID:		FA86722-3			FA93635-1	FA98065-2	FC720-1	FC2733-6	NF12005-001	NF12005-002	FA14443-4	FA14443-9
Sample Date:		6/23/2021	9/24/2021	12/10/2021	2/28/2022	8/9/2022	11/15/2022	2/14/2023	6/11/2012	6/11/2012	4/23/2014	4/24/2014
Sample Type:		N	N	N	N	N	N	N	N	FD	N	N
Sample Depth Interval (feet):		6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	4.30 - 14.30	4.30 - 14.30	4.30 - 14.30	4.30 - 14.30
VOCs by Method 8260D (µg/L)	MCL											
Benzene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m,p-Xylene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether (MTBE)	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	25*	46.7	20.7	27.2	18.3	31.4	42	47.4	NA	NA	NA	NA
o-Xylene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs by Method 8270E SIM (µg/L)	MCL											
1-Methylnaphthalene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-c,d)pyrene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	25*	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Units

µg/L = micrograms/Liter

Notes

FD = Field Duplicate

ID = Identification

MCL = Maximum Contaminant Level

N = Normal Environmental Sample

NA = Not Analyzed NV = No Value

PAH = Polycyclic Aromatic Hydrocarbon *RBSL = Risk Based Screening Level

Detected analytes are indicated in bold.

Results highlighted in grey exceed the MCL

Results highlighted in blue exceed the RBSL

Qualifier

Location ID:			MW-	2R-129				MW-4-129			MW	-5-129
Field Sample ID:		MW-2R-129	MW-2R-129	MW-2R-129	MW-2R-129	MW-4-129	MW-4-129	MW-4-129	MW-4-129	MW-4-129	Bldg-129 Dup	MW-5-129
Lab Sample ID:		FA21793-2	FA86722-5	FA91593-8	FA98065-4	J1100754-006	21205031301	21304123311	FA14443-3	FA21793-1	J1100754-004	J1100754-003
Sample Date:		1/29/2015	6/23/2021	12/10/2021	8/9/2022	2/17/2011	5/2/2012	4/11/2013	4/23/2014	1/28/2015	2/17/2011	2/17/2011
Sample Type:		N	N	N	Ν	Ν	Ν	Ν	Ν	Ν	FD	N
Sample Depth Interval (feet):		4.30 - 14.30	4.30 - 14.30	4.30 - 14.30	4.30 - 14.30	6.04 - 16.04	6.04 - 16.04	6.04 - 16.04	6.04 - 16.04	6.04 - 16.04	6.00 - 16.00	6.00 - 16.00
VOCs by Method 8260D (µg/L)	MCL											
Benzene	5	NA	NA	NA	NA	0.21 U	0.099 U	0.111 U	0.5 U	0.5 U	0.21 U	0.21 U
Ethylbenzene	700	NA	NA	NA	NA	0.21 U	0.119 U	0.109 U	0.5 U	0.5 U	2.1	1.9
m,p-Xylene	NV	NA	NA	NA	NA	0.41 U	NA	NA	NA	NA	3.1	3.1
Methyl tert-butyl ether (MTBE)	NV	NA	NA	NA	NA	0.14 U	0.06 U	0.078 U	0.5 U	0.5 U	0.14 U	0.14 U
Naphthalene	25*	NA	2 U	2 U	2 U	0.5	5.75	0.176 U	2 U	2 U	160	150
o-Xylene	NV	NA	NA	NA	NA	0.14 U	NA	NA	NA	NA	1.4	1.4
Toluene	1,000	NA	NA	NA	NA	0.19 U	0.127 U	0.122 U	0.5 U	0.5 U	0.59	0.53
Xylenes, Total	10,000	NA	NA	NA	NA	NA	0.384 U	0.179 U	1 U	1 U	NA	NA
PAHs by Method 8270E SIM (µg/L)	MCL											
1-Methylnaphthalene	NV	NA	NA	NA	NA	0.074 U	0.07 U	0.015 U	0.48 U	0.42 U	3.7	5.3
2-Methylnaphthalene	NV	NA	NA	NA	NA	0.073 U	0.065 U	0.014 U	0.48 U	0.42 U	1.9	3.1
Acenaphthene	NV	NA	NA	NA	NA	0.079 U	0.038 U	0.004 U	0.48 U	0.42 U	8	11
Acenaphthylene	NV	NA	NA	NA	NA	0.076 U	0.071 U	0.012 U	0.48 U	0.42 U	0.41	0.52
Anthracene	NV	NA	NA	NA	NA	0.076 U	0.025 U	0.02 U	0.48 U	0.42 U	0.47	0.57
Benzo(a)anthracene	NV	NA	NA	NA	NA	0.068 U	0.06 U	0.0092 U	0.048 U	0.042 U	0.37	0.48
Benzo(a)pyrene	0.2	NA	NA	NA	NA	0.054 U	0.023 U	0.0056 U	0.048 U	0.042 U	0.23	0.3
Benzo(b)fluoranthene	NV	NA	NA	NA	NA	0.069 U	0.019 U	0.0042 U	0.048 U	0.042 U	0.26	0.32
Benzo(g,h,i)perylene	NV	NA	NA	NA	NA	0.063 U	0.037 U	0.0053 U	0.048 U	0.042 U	0.084	0.11
Benzo(k)fluoranthene	NV	NA	NA	NA	NA	0.076 U	0.04 U	0.008 U	0.048 U	0.042 U	0.19	0.24
Chrysene	NV	NA	NA	NA	NA	0.073 U	0.019 U	0.0086 U	0.095 U	0.083 U	0.43	0.49
Dibenz(a,h)anthracene	NV	NA	NA	NA	NA	0.057 U	0.035 U	0.0078 U	0.048 U	0.042 U	0.6	0.61
Fluoranthene	NV	NA	NA	NA	NA	0.087 U	0.04 U	0.0034 U	0.48 U	0.42 U	2	2.5
Fluorene	NV	NA	NA	NA	NA	0.077 U	0.099 U	0.019 U	0.48 U	0.42 U	3.8	5.1
Indeno(1,2,3-c,d)pyrene	NV	NA	NA	NA	NA	0.062 U	0.041 U	0.0025 U	0.048 U	0.042 U	0.54	0.56
Naphthalene	25*	NA	NA	NA	NA	0.1	0.038 U	0.0046 U	0.48 U	0.42 U	13	17
Phenanthrene	NV	NA	NA	NA	NA	0.094	0.029 U	0.0034 U	0.48 U	0.42 U	1.5	1.6
Pyrene	NV	NA	NA	NA	NA	0.07 U	0.036 U	0.0072 U	0.48 U	0.42 U	1.2	1.5

Units

µg/L = micrograms/Liter

Notes

FD = Field Duplicate

ID = Identification

MCL = Maximum Contaminant Level

N = Normal Environmental Sample

NA = Not Analyzed NV = No Value

PAH = Polycyclic Aromatic Hydrocarbon *RBSL = Risk Based Screening Level

Detected analytes are indicated in bold.

Results highlighted in grey exceed the MCL

Results highlighted in blue exceed the RBSL

Qualifier

Location ID:							MW-5-129					
Field Sample ID:		MW-5-129	MW-5-129-B	MW-5-129	MW-5-129-b	MW-205-129	MW-5-129	MW-205-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129
Lab Sample ID:		21205031305	21205031308	21304161605	21304161608	FA14443-1	FA14443-7	FA21793-7	FA21793-6	FA36254-5	FA42001-9	FA44581-5
Sample Date:		5/2/2012	5/2/2012	4/15/2013	4/15/2013	4/23/2014	4/23/2014	1/29/2015	1/29/2015	8/16/2016	3/10/2017	6/2/2017
Sample Type:		Ν	FD	Ν	FD	FD	Ν	FD	Ν	Ν	N	N
Sample Depth Interval (feet):		6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00
VOCs by Method 8260D (µg/L)	MCL											<u> </u>
Benzene	5	0.099 U	0.099 U	0.111 U	0.111 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA
Ethylbenzene	700	1.65	0.119 U	0.109 U	0.109 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA
m,p-Xylene	NV	NA										
Methyl tert-butyl ether (MTBE)	NV	0.06 U	0.06 U	0.078 U	0.078 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA
Naphthalene	25*	160	31	0.176 U	0.176 U	9.8	10.1	17.6	14.7	12.1	24	15.4
o-Xylene	NV	NA										
Toluene	1,000	0.127 U	0.127 U	0.122 U	0.122 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA
Xylenes, Total	10,000	4.98	0.384 U	0.179 U	0.179 U	1 U	1 U	1 U	1 U	1 U	NA	NA
PAHs by Method 8270E SIM (µg/L)	MCL											
1-Methylnaphthalene	NV	0.37	0.215	0.016 U	0.015 U	3.1	3.5	2.7	2.8	NA	NA	NA
2-Methylnaphthalene	NV	0.44	0.464	0.015 U	0.015 U	5.8	6.5	5.2	5.4	NA	NA	NA
Acenaphthene	NV	8.99	12.8	0.147	0.417	6.7	7.6	5.6	5.5	NA	NA	NA
Acenaphthylene	NV	4.33	3.11	0.507	0.264	0.47 U	0.48 U	0.43 U	0.42 U	NA	NA	NA
Anthracene	NV	10.1	2.49	0.663	0.41	1.1	1.6	0.71	0.63	NA	NA	NA
Benzo(a)anthracene	NV	11.3	4.32	1.53	0.646	0.83	0.66	0.42	0.34	NA	NA	NA
Benzo(a)pyrene	0.2	14	4.19	1.65	0.642	0.39	0.24	0.19	0.18	NA	NA	NA
Benzo(b)fluoranthene	NV	18.2	5.78	1.73	0.422	0.52	0.3	0.22	0.23	NA	NA	NA
Benzo(g,h,i)perylene	NV	11.5	3.45	0.585	0.297	0.14	0.081	0.083	0.077	NA	NA	NA
Benzo(k)fluoranthene	NV	6.79	1.84	1.07	0.476	0.44	0.27	0.19	0.16	NA	NA	NA
Chrysene	NV	19.1	4.46	2.69	1.37	0.97	0.69	0.42	0.33	NA	NA	NA
Dibenz(a,h)anthracene	NV	1.7	0.619	0.087	0.048	0.047 U	0.048 U	0.043 U	0.042 U	NA	NA	NA
Fluoranthene	NV	8.81	4.01	1.95	1.08	5	5	2.7	2.4	NA	NA	NA
Fluorene	NV	1.26	0.735	0.148	0.345	6.1	6.8	4.3	4.1	NA	NA	NA
Indeno(1,2,3-c,d)pyrene	NV	12.2	4.17	0.596	0.294	0.17	0.13	0.11	0.11	NA	NA	NA
Naphthalene	25*	1.18	0.631	0.0049 U	0.0047 U	8.7	9.3	9.5	10.3	NA	NA	NA
Phenanthrene	NV	3.2	0.973	0.413	0.463	11.1	12.1	7.2	6.4	NA	NA	NA
Pyrene	NV	10.3	3.61	1.78	0.839	3.2	2.8	1.6	1.3	NA	NA	NA

µg/L = micrograms/Liter

Notes

FD = Field Duplicate

ID = Identification

MCL = Maximum Contaminant Level N = Normal Environmental Sample

NA = Not Analyzed

NV = No Value

PAH = Polycyclic Aromatic Hydrocarbon *RBSL = Risk Based Screening Level

Detected analytes are indicated in bold.

Results highlighted in grey exceed the MCL

Results highlighted in blue exceed the RBSL

Qualifier

						MW-5-129					
	MW-5-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129
	FA48060-8	FA49907-9	FA52436-5	FA55076-4	FA57983-5	FA59885-5	FA62319-5	FA64647-4	FA67552-5	FA69910-5	FA72991-6
	9/25/2017	12/5/2017	3/13/2018	6/14/2018	9/25/2018	12/4/2018	3/13/2019	5/30/2019	8/26/2019	11/12/2019	2/28/2020
											_;;0
											6.00 - 16.00
MCI	0.00 - 10.00	0.00 - 10.00	0.00 - 10.00	0.00 - 10.00	0.00 - 10.00	0.00 - 10.00	0.00 - 10.00	0.00 - 10.00	0.00 - 10.00	0.00 - 10.00	0.00 - 10.00
	ΝΔ	ΝΔ	ΝΔ	ΝΔ	ΝΔ	ΝΔ	ΝΔ	NA	NA	NA	NA
											NA
											NA
											NA
											95.3
											NA
,									-		NA
,	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
											NA
	NA	NA	NA	NA			NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA		NA	NA	NA		NA	NA		NA	NA
	NA		NA	NA			NA	NA		NA	NA
										NA	NA
NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NV NV 0.2 NV NV	FA48060-8 9/25/2017 N 6.00 - 16.00 MCL 5 NA 700 NA NV NA NV NA 25* 27.1 NV NA 1,000 NA 10,000 NA MCL NV NA 10,000 NA 10,000 NA NV <	FA48060-8 FA49907-9 9/25/2017 12/5/2017 N N 6.00 - 16.00 6.00 - 16.00 MCL	FA48060-8 FA49907-9 FA52436-5 9/25/2017 12/5/2017 3/13/2018 N N N 6.00 - 16.00 6.00 - 16.00 6.00 - 16.00 MCL	FA48080-8 FA49907-9 FA52436-5 FA55076-4 9/25/2017 12/5/2017 3/13/2018 6/14/2018 N N N N 6.00 - 16.00 6.00 - 16.00 6.00 - 16.00 6.00 - 16.00 MCL	FA48060-8 FA49907-9 FA52436-5 FA55076-4 FA57983-5 9/25/2017 12/5/2017 3/13/2018 6/14/2018 9/25/2018 N N N N N N 6.00 - 16.00 6.00 - 16.00 6.00 - 16.00 6.00 - 16.00 6.00 - 16.00 MCL	FA48060-8FA49907-9FA52436-5FA55076-4FA57983-5FA59885-59/25/201712/5/20173/13/20186/14/20189/25/201812/4/2018NNNNNNN6.00-16.006.00-16.006.00-16.006.00-16.006.00-16.00MCL </td <td>FA4800-8 925/2017FA49907-9 12/5/2017FA52430-5 3/13/2018FA55076-4 6/14/2018FA57983-5 925/2018FA59885-5 12/4/2018FA62319-5 3/13/2019NNNNNNNNN6.00 - 16.006.00 - 16.006.00 - 16.006.00 - 16.006.00 - 16.006.00 - 16.00MCL</td> <td>FA48080-8 FA49907-9 FA52438-5 FA55076-4 FA57983-5 PA58885-5 FA62319-5 FA64847-4 9/25/2017 12/5/2017 12/5/2017 3/13/2019 3/13/2</td> <td>FA48000-8 9252017FA92430-9 12/52017FA52430-5 31/32018FA53076-4 61/42018FA57935-5 9252018FA63985-5 12/4/2018FA62319-5 31/32019FA64647-4 5020219FA67532-5 8262019NNN<td>FA48880-3 FA48907-3 FA5238-5 FA53985-5 FA62315-5 <th< td=""></th<></td></td>	FA4800-8 925/2017FA49907-9 12/5/2017FA52430-5 3/13/2018FA55076-4 6/14/2018FA57983-5 925/2018FA59885-5 12/4/2018FA62319-5 3/13/2019NNNNNNNNN6.00 - 16.006.00 - 16.006.00 - 16.006.00 - 16.006.00 - 16.006.00 - 16.00MCL	FA48080-8 FA49907-9 FA52438-5 FA55076-4 FA57983-5 PA58885-5 FA62319-5 FA64847-4 9/25/2017 12/5/2017 12/5/2017 3/13/2019 3/13/2	FA48000-8 9252017FA92430-9 12/52017FA52430-5 31/32018FA53076-4 61/42018FA57935-5 9252018FA63985-5 12/4/2018FA62319-5 31/32019FA64647-4 5020219FA67532-5 8262019NNN <td>FA48880-3 FA48907-3 FA5238-5 FA53985-5 FA62315-5 <th< td=""></th<></td>	FA48880-3 FA48907-3 FA5238-5 FA53985-5 FA62315-5 FA62315-5 <th< td=""></th<>

Units

µg/L = micrograms/Liter

Notes

FD = Field Duplicate

ID = Identification

MCL = Maximum Contaminant Level

N = Normal Environmental Sample

NA = Not Analyzed NV = No Value

PAH = Polycyclic Aromatic Hydrocarbon *RBSL = Risk Based Screening Level

Detected analytes are indicated in bold.

Results highlighted in grey exceed the MCL

Results highlighted in blue exceed the RBSL

Qualifier

					N 43 4	-5-129					NUN 7 400	
Location ID:			1			1		1			MW-7-129	1
Field Sample ID:		MW-5-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129	MW-5-129_Q321	MW-5-129_Q421	MW-5-129	MW-7-129	MW-7-129	MW-7-129
Lab Sample ID:		FA75552-2	FA78697-2	FA81666-6	FA84062-2	FA86722-2	FA89303-7	FA91593-5	FA98065-3	J1100754-001	21205031303	21304123310
Sample Date:		6/2/2020	9/9/2020	12/10/2020	3/18/2021	6/23/2021	9/24/2021	12/10/2021	8/9/2022	2/17/2011	5/2/2012	4/11/2013
Sample Type:		Ν	N	Ν	Ν	N	Ν	Ν	Ν	N	N	N
Sample Depth Interval (feet):		6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	6.00 - 16.00	4.94 - 14.94	4.94 - 14.94	4.94 - 14.94
VOCs by Method 8260D (µg/L)	MCL											
Benzene	5	NA	NA	NA	NA	NA	NA	NA	NA	0.21 U	0.099 U	0.111 U
Ethylbenzene	700	NA	NA	NA	NA	NA	NA	NA	NA	0.21 U	0.119 U	0.109 U
m,p-Xylene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.41 U	NA	NA
Methyl tert-butyl ether (MTBE)	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.14 U	0.06 U	0.078 U
Naphthalene	25*	37.2	25.8	16.3	2	1.5	16.9	4.6	7	0.24 U	0.065 U	0.176 U
o-Xylene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.14 U	NA	NA
Toluene	1,000	NA	NA	NA	NA	NA	NA	NA	NA	0.19	0.127 U	0.122 U
Xylenes, Total	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.384 U	0.179 U
PAHs by Method 8270E SIM (µg/L)	MCL											
1-Methylnaphthalene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.074 U	0.069 U	0.015 U
2-Methylnaphthalene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.073 U	0.064 U	0.014 U
Acenaphthene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.079 U	0.037 U	0.004 U
Acenaphthylene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.076 U	0.07 U	0.012 U
Anthracene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.076 U	0.024 U	0.02 U
Benzo(a)anthracene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.068 U	0.059 U	0.0092 U
Benzo(a)pyrene	0.2	NA	NA	NA	NA	NA	NA	NA	NA	0.054 U	0.023 U	0.0056 U
Benzo(b)fluoranthene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.069 U	0.018 U	0.0042 U
Benzo(g,h,i)perylene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.063 U	0.311	0.0053 U
Benzo(k)fluoranthene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.076 U	0.039 U	0.008 U
Chrysene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.073 U	0.018 U	0.0086 U
Dibenz(a,h)anthracene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.59	0.203	0.0078 U
Fluoranthene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.088 U	0.04 U	0.0034 U
Fluorene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.077 U	0.098 U	0.019 U
Indeno(1,2,3-c,d)pyrene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.47	0.204	0.0025 U
Naphthalene	25*	NA	NA	NA	NA	NA	NA	NA	NA	0.073	0.038 U	0.0046 U
Phenanthrene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.087 U	0.028 U	0.0034 U
Pyrene	NV	NA	NA	NA	NA	NA	NA	NA	NA	0.07 U	0.036 U	0.0072 U

Units

µg/L = micrograms/Liter

Notes

FD = Field Duplicate

ID = Identification MCL = Maximum Contaminant Level

N = Normal Environmental Sample

NA = Not Analyzed

NV = No Value

PAH = Polycyclic Aromatic Hydrocarbon *RBSL = Risk Based Screening Level

Detected analytes are indicated in bold.

Results highlighted in grey exceed the MCL

Results highlighted in blue exceed the RBSL

Qualifier

Table 3

Historical Groundwater Monitoring Data Groundwater Monitoring Report and Site-Specific Work Plan for AOC T (TU544) Joint Base Charleston Air, South Carolina

Location ID:		MW-	7-129					MW-10-129				
Field Sample ID:		MW-7-129	MW-7-129	MW-10-129								
Lab Sample ID:		FA14443-8	FA21793-3	J1100754-002	21205031304	21304161603	FA14443-2	FA21793-5	FA36254-4	FA42001-8	FA44581-6	FA48060-7
Sample Date:		4/24/2014	1/29/2015	2/17/2011	5/2/2012	4/15/2013	4/23/2014	1/29/2015	8/16/2016	3/10/2017	6/2/2017	9/25/2017
Sample Type:		Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	N
Sample Depth Interval (feet):		4.94 - 14.94	4.94 - 14.94	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50
VOCs by Method 8260D (µg/L)	MCL											
Benzene	5	0.5 U	0.5 U	0.21 U	0.099 U	0.111 U	0.5 U	0.5 U	0.5 U	NA	NA	NA
Ethylbenzene	700	0.5 U	0.5 U	0.21 U	0.119 U	0.109 U	0.5 U	0.5 U	0.5 U	NA	NA	NA
m,p-Xylene	NV	NA	NA	0.41 U	NA							
Methyl tert-butyl ether (MTBE)	NV	0.5 U	0.5 U	0.14 U	0.06 U	0.078 U	0.5 U	0.5 U	0.5 U	NA	NA	NA
Naphthalene	25*	2 U	2 U	0.24 U	0.065 U	0.176 U	2 U	1.3	2 U	2 U	2 U	2 U
o-Xylene	NV	NA	NA	0.14 U	NA							
Toluene	1,000	0.5 U	0.5 U	0.19 U	0.127 U	0.122 U	0.5 U	0.5 U	0.5 U	NA	NA	NA
Xylenes, Total	10,000	1 U	1 U	NA	0.384 U	0.179 U	1 U	1 U	1 U	NA	NA	NA
PAHs by Method 8270E SIM (µg/L)	MCL											
1-Methylnaphthalene	NV	0.48 U	0.43 U	0.074 U	0.07 U	0.108	0.47 U	0.43 U	NA	NA	NA	NA
2-Methylnaphthalene	NV	0.48 U	0.43 U	0.073 U	0.065 U	0.015 U	0.47 U	0.43 U	NA	NA	NA	NA
Acenaphthene	NV	0.48 U	0.43 U	0.094	0.038 U	0.0042 U	0.47 U	0.43 U	NA	NA	NA	NA
Acenaphthylene	NV	0.48 U	0.43 U	0.076 U	0.071 U	0.013 U	0.47 U	0.43 U	NA	NA	NA	NA
Anthracene	NV	0.48 U	0.43 U	0.076 U	0.025 U	0.021 U	0.47 U	0.43 U	NA	NA	NA	NA
Benzo(a)anthracene	NV	0.048 U	0.043 U	0.067 U	0.06 U	0.0097 U	0.047 U	0.043 U	NA	NA	NA	NA
Benzo(a)pyrene	0.2	0.048 U	0.043 U	0.054 U	0.023 U	0.0058 U	0.047 U	0.043 U	NA	NA	NA	NA
Benzo(b)fluoranthene	NV	0.048 U	0.043 U	0.069 U	0.019 U	0.0045 U	0.047 U	0.043 U	NA	NA	NA	NA
Benzo(g,h,i)perylene	NV	0.048 U	0.043 U	0.063 U	0.037 U	0.0056 U	0.047 U	0.043 U	NA	NA	NA	NA
Benzo(k)fluoranthene	NV	0.048 U	0.043 U	0.076 U	0.04 U	0.0084 U	0.047 U	0.043 U	NA	NA	NA	NA
Chrysene	NV	0.096 U	0.087 U	0.073 U	0.019 U	0.009 U	0.094 U	0.087 U	NA	NA	NA	NA
Dibenz(a,h)anthracene	NV	0.048 U	0.043 U	0.057 U	0.035 U	0.0082 U	0.047 U	0.043 U	NA	NA	NA	NA
Fluoranthene	NV	0.48 U	0.43 U	0.087 U	0.04 U	0.0036 U	0.47 U	0.43 U	NA	NA	NA	NA
Fluorene	NV	0.48 U	0.43 U	0.18	0.164	0.02 U	0.39	0.43 U	NA	NA	NA	NA
Indeno(1,2,3-c,d)pyrene	NV	0.048 U	0.043 U	0.062 U	0.041 U	0.0026 U	0.047 U	0.043 U	NA	NA	NA	NA
Naphthalene	25*	0.48 U	0.43 U	0.084	0.038 U	0.149	0.47 U	0.54	NA	NA	NA	NA
Phenanthrene	NV	0.48 U	0.43 U	0.086 U	0.029 U	0.0036 U	0.36	0.43 U	NA	NA	NA	NA
Pyrene	NV	0.48 U	0.43 U	0.07 U	0.036 U	0.0075 U	0.47 U	0.43 U	NA	NA	NA	NA

µg/L = micrograms/Liter

Notes

FD = Field Duplicate

ID = Identification

MCL = Maximum Contaminant Level

N = Normal Environmental Sample NA = Not Analyzed

NV = No Value

PAH = Polycyclic Aromatic Hydrocarbon *RBSL = Risk Based Screening Level

Detected analytes are indicated in bold.

Results highlighted in grey exceed the MCL

Results highlighted in blue exceed the RBSL

Qualifier

Location ID:							MW-10-129					
Field Sample ID:		MW-10-129										
Lab Sample ID:		FA49907-7	FA52436-4	FA55076-3	FA57983-3	FA59885-3	FA64647-2	FA67552-3	FA69910-3	FA86722-4	FA91593-7	FA98065-1
Sample Date:		12/5/2017	3/13/2018	6/14/2018	9/25/2018	12/4/2018	5/30/2019	8/26/2019	11/12/2019	6/23/2021	12/10/2021	8/9/2022
Sample Type:		N	Ν	Ν	N	Ν	N	Ν	Ν	Ν	N	N
Sample Depth Interval (feet):		4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50	4.50 - 14.50
VOCs by Method 8260D (µg/L)	MCL											
Benzene	5	NA										
Ethylbenzene	700	NA										
m,p-Xylene	NV	NA										
Methyl tert-butyl ether (MTBE)	NV	NA										
Naphthalene	25*	2 U	1.9	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	NV	NA										
Toluene	1,000	NA										
Xylenes, Total	10,000	NA										
PAHs by Method 8270E SIM (µg/L)	MCL											
1-Methylnaphthalene	NV	NA										
2-Methylnaphthalene	NV	NA										
Acenaphthene	NV	NA										
Acenaphthylene	NV	NA										
Anthracene	NV	NA										
Benzo(a)anthracene	NV	NA										
Benzo(a)pyrene	0.2	NA										
Benzo(b)fluoranthene	NV	NA										
Benzo(g,h,i)perylene	NV	NA										
Benzo(k)fluoranthene	NV	NA										
Chrysene	NV	NA										
Dibenz(a,h)anthracene	NV	NA										
Fluoranthene	NV	NA										
Fluorene	NV	NA										
Indeno(1,2,3-c,d)pyrene	NV	NA										
Naphthalene	25*	NA										
Phenanthrene	NV	NA										
Pyrene	NV	NA										

Units

µg/L = micrograms/Liter

Notes

FD = Field Duplicate

ID = Identification

MCL = Maximum Contaminant Level N = Normal Environmental Sample

NA = Not Analyzed

NV = No Value

PAH = Polycyclic Aromatic Hydrocarbon *RBSL = Risk Based Screening Level

Detected analytes are indicated in bold.

Results highlighted in grey exceed the MCL

Results highlighted in blue exceed the RBSL

Qualifier

Table 4 AOC T (TU544) Biosparge System - Air Sparge Pressure Design Groundwater Monitoring Report and Site-Specific Work Plan for AOC T (TU544) Joint Base Charleston - Air, South Carolina

				Maximum					
				Friction Piping	Depth to Top of		Total		
Longest Pipe		Conveyance	Friction Piping	Loss	Screen Below	Hydrostatic	Hydrostatic	Breakout	Total Pressure
Run	Air Flow Rate	Pipe Diameter	Loss	(de minimus)	Water Table	Loss	Loss	Pressure*	Loss
(feet)	(cfm)	(inches)	(psi/100 ft)	(psi)	(feet)	(psi/ft)	(psi)	(psi)	(psi)
50	2	0.5	0.0036	0.0018	15	0.433	6.50	1.30	7.80

		Охуде	n Delivery							
Air flow rate	Air Flow Rate		Pounds of air	Concentration	Pounds of					
(System)	(System)	Density of Air	per day	of Oxygen in Air	Oxygen per day					
(cfm)	(cfd)	(pounds/cf)	(pounds)	(%)	(pounds)					
6	8,640	0.0748	646.27	20.90	135.07					

Notes:

cf - cubic feet

cfm - cubic feet per minute

cfd - cubic feet per day

psi - pounds per square inch

ft - foot

% - percent

* - Estimated at 20% of Hydrostatic Head

Attachment 3

Well Development and Sampling Forms

MW-1-129

1-Well Integrity			
Date	09/29/2023	Time	15:13
Well Integrity		Well needs repair	No
Needs well tag	Yes	Locking cap	Yes
Remarks	Needs new lock		
2-Purging Data			
Date	09/29/2023	Time	15:13
Well diameter (inches)	4	Tubing diameter (inches)	0.25
Well screen interval depth (feet to feet)	6 to 16	Static depth to water (feet)	3.31
Free product?	NO	Depth to product (ft btoc)	
Purge pump type or bailer	PP-Peristaltic Pump	Total well depth (feet)	15.91
Well capacity (gallons/ foot)	0.65	Well volume purge: 1 Well volume (gallons)	10.34
Pump volume (gallons)		Tubing capacity (gallons/ foot)	
Tubing length (feet)	19	Flow cell volume (gallons)	
Equipment volume purge: 1 Equipment vol. (gallons)		Initial pump or tubing depth in well (feet)	13.5
Final pump or tubing depth in well (feet)		Purging Initiated At	
Purging Ended At		Total volume purged (gallons)	

3-Stabilization Parameters

Date	Time	Volume Purged (gallons)	Cuml Volume Purged (gallons)	Purge Rate (gpm)	Depth To Water (feet)	pH (SU)	Tempera (C)	Spec Cond (uS/cm)	Dissolve Oxygen (mg/L)	Turbidity (NTU)	ORP (mV)	Color/ odor
09/29/23	15:25	0.1		0.05	3.63	5.87	22.1	111.1	0.43	1.75	-33	Clear
09/29/23	15:30	0.25		0.05	3.74	5.87	22.1	106.5	0.31	2.49	-37.7	Clear
09/29/23	15:35	0.25		0.05	3.91	5.87	22.3	106.4	0.31	2.52	-39.9	Clear
09/29/23	15:40	0.25		0.05	3.99	5.87	22.3	108	0.26	3.22	-44.1	Clear
09/29/23	15:45	0.25		0.05	4.17	5.87	22.3	103.3	0.26	2.78	-45.0	Clear
09/29/23	15:50	0.25		0.05	2.66	5.87	22.3	107.3	0.25	1.69	-46.3	Clear

4-Sample

Date	09/29/2023	Date	11/06/2023
Time	15:55	Time	14:34

Groundwater Monitoring Site: Carolina ORC-JBCA-TU544 (AOC T) Joint Base Charleston

Sample ID	MW-1-129_0923	Sample Date	09/29/2023
Sample Time	15:55	Pump or tubing depth in well (feet)	13.5
Tubing material code	Teflon	Field-Filtered	Ν
Filtration equipment type		Filter size (um)	
Field decontamination- Pump	NA	Field decontamination-	Ν
Duplicate	Υ	Sampled by	CR
			LATTYN
Affiliation	Bhate	Sampler(s) signature(s)	
Remarks	8260 and 8270 DUPs		

5-Sampling Container

Date	Time	# of Containers	Material Code	Volume	Preservative Used	Intended Analysis/ Method	Sampling Equipment Code	Sample Pump Flow Rate (mL/ minute)
09/29/23	16:14	4	AG-Amber Glass	250 mL	None	8270E Naphthalene SVOCs + DUP		200
09/29/23	16:42	6	CG-Clear Glass	40 mL	HCL	8260D Naphthalene VOCs		200

Photos

MW-1R-129

1-Well Integrity			
Date	04/18/2024	Time	17:03
Well Integrity		Well needs repair	No
Needs well tag	No	Locking cap	No
Remarks	New well. Developed last w	veek. Lock keyed to 1600.	
2-Purging Data			
Date	04/18/2024	Time	17:07
Well diameter (inches)	2.00	Tubing diameter (inches)	0.25
Well screen interval depth (feet to feet)	6 to 16	Static depth to water (feet)	3.10
Free product?	NO	Depth to product (ft btoc)	
Purge pump type or bailer	PP-Peristaltic Pump	Total well depth (feet)	13.91
Well capacity (gallons/ foot)	0.16	Well volume purge: 1 Well volume (gallons)	1.73
Pump volume (gallons)		Tubing capacity (gallons/ foot)	
Tubing length (feet)	16	Flow cell volume (gallons)	
Equipment volume purge: 1 Equipment vol. (gallons)		Initial pump or tubing depth in well (feet)	13
Final pump or tubing depth in well (feet)	13	Purging Initiated At	17:15
Purging Ended At	19:35	Total volume purged (gallons)	6.75

3-Stabilization Parameters

Date	Time	Volume Purged (gallons)	Cuml Volume Purged (gallons)	Purge Rate (gpm)	Depth To Water (feet)	pH (SU)	Temperat (C)	Spec Cond (uS/cm)	Dissolvec Oxygen (mg/L)	Turbidity (NTU)	ORP (mV)	Color/ odor
04/18/24	17:20	0.25	0.25	0.05	3.42	11.84	20.5	1.900	0.69	9.81	59.0	Clear, no odor
04/18/24	17:25	0.25	0.50	0.05	3.42	11.69	20.5	1.260	0.44	9.69	45.4	Clear, no odor
04/18/24	17:30	0.25	0.75	0.05	3.42	11.58	20.5	1.040	0.34	12.63	33.5	Clear, no odor
04/18/24	17:35	0.25	1.00	0.05	3.42	11.36	20.5	0.8	0.25	12.98	15	Clear with some sediment no odor

Date	Time	Volume Purged (gallons)	Cuml Volume Purged (gallons)	Purge Rate (gpm)	Depth To Water (feet)	pH (SU)	Temperat (C)	Spec Cond (uS/cm)	Dissolvec Oxygen (mg/L)	Turbidity (NTU)	ORP (mV)	Color/ odor
04/18/24	17:40	0.25	1.25	0.05	3.47	11.29	20.5	0.578	0.23	8.10	-16.6	Clear no odor
04/18/24	17:45	0.25	1.50	0.05	3.48	11.27	20.2	0.549	0.23	7.61	-23.1	Clear no odor
04/18/24	17:50	0.25	1.75	0.05	3.49	11.24	20.	0.536	0.22	7.27	-35.3	Clear no odor
04/18/24	17:55	0.25	2	0.05	3.5	11.13	19.8	0.599	0.21	7.90	-53.1	Clear no odor
04/18/24	18:00	0.25	2.25	0.05	3.52	11.13	19.7	0.440	0.20	7.18	-78.2	Clear no odor
04/18/24	18:05	0.25	2.50	0.05	3.55	11.08	19.6	0.441	0.2	8.46	-85	Clear no odor
04/18/24	18:10	0.25	2.75	0.05	3.59	11.0	19.7	0.422	0.19	9.23	-96.5	Clear no odor
04/18/24	18:15	0.25	3	0.05	3.59	10.93	19.8	0.335	0.19	9.61	-103.8	Clear no odor
04/18/24	18:20	0.25	3.25	0.05	3.58	10.90	19.7	0.255	0.18	11.55	-114.8	Clear no odor
04/18/24	18:25	0.25	3.50	0.05	3.58	10.76	19.7	0.270	0.18	12.42	-124.9	Clear no odor
04/18/24	18:30	0.25	3.75	0.05	3.6	10.86	19.6	0.300	0.17	9.3	-130.4	Clear, no odor
04/18/24	18:35	0.25	4.00	0.05	3.6	10.85	19.6	0.296	0.17	9.52	-139.6	Clear, no odor
04/18/24	18:40	0.25	4.25	0.05	3.62	10.67	19.7	0.250	0.17	8.73	-150.0	Clear, no odor
04/18/24	18:45	0.25	4.50	0.05	3.63	10.77	19.7	0.264	0.17	9.99	-159.9	Clear, no odor
04/18/24	18:50	0.25	4.75	0.05	3.65	10.75	19.7	0.254	0.16	8.55	-169	Clear, no odor
04/18/24	18:55	0.25	5.00	0.05	3.65	10.75	19.7	0.238	0.16	8.92	-170.7	Clear, no odor
04/18/24	19:00	0.25	5.25	0.05	3.65	10.74	19.6	0.232	0.16	9.42	-171.8	Clear, no odor
04/18/24	19:05	0.25	5.50	0.05	3.64	10.69	19.6	0.212	0.16	9.42	-188.7	Clear, no odor
04/18/24	19:10	0.25	5.75	0.05	3.63	10.66	19.6	0.206	0.16	9.79	-186.0	Clear, no odor
04/18/24	19:15	0.25	6.00	0.05	3.63	10.62	19.6	0.201	0.16	9.99	-195.9	Clear, no odor

Date Purge Depth pH (SU) Temperat Dissolvec Turbidity ORP Color/ Time Volume Cuml Spec Purged Volume Rate То (C) Cond Oxygen (NTU) (mV) odor (gallons) Water (uS/cm) Purged (gpm) (mg/L)(gallons) (feet) Clear, 04/18/24 19:20 0.25 6.25 0.05 3.63 10.59 19.6 0.200 0.16 9.28 -222.2 no odor Clear, 04/18/24 19:25 0.25 6.50 0.05 3.62 10.53 19.6 0.189 0.16 6.69 -245.0 no odor Clear, 19:30 0.25 6.50 0.05 3.60 19.5 -255.8 04/18/24 10.57 0.184 0.15 6.64 no odor Clear, 04/18/24 19:35 0.25 6.75 0.05 3.60 10.57 19.5 0.181 0.15 6.76 -259.9 no odor

4-Sample

Date	04/18/2024	Time	19:40
Sample ID	TU544-MW1R-129_0424, ""-a, ""- MS, ""-MSD	Sample Date	04/18/2024
Sample Time	19:40	Pump or tubing depth in well (feet)	13
Tubing material code	Teflon	Field-Filtered	Ν
Filtration equipment type	None	Filter size (um)	
Field decontamination- Pump	Ν	Field decontamination- Tubing	Ν
Duplicate	Y	Sampled by	Caitlin Ryan
	Dhata		Carthy Carthy
Affiliation	Bhate	Sampler(s) signature(s)	Caitlin Ryan
Remarks	DUP, MS, and MSD		
E Complian Containon			

5-Sampling Container

Date	Time	# of Containers	Material Code	Volume	Preservative Used	Intended Analysis/ Method	Sampling Equipment Code	Sample Pump Flow Rate (mL/ minute)
04/18/24	19:45	8	AG-Amber Glass	250 mL	None	8270 -Naphthalene only	APP-After Peristaltic Pump	200
04/18/24	19:46	12	CG-Clear Glass	40 mL	HCL	8260 - Naphthalene only	APP-After Peristaltic Pump	200

Photos

Attachment 4

Laboratory and Data Validation Reports

Report of Analysis

Arcadis U.S., Inc.

30 Patewood Drive Suite 155 Greenville, SC 29615 Attention: Kathleen Hamrick

Project Name: JBC Air, LTM

Lot Number:**YI30001** Date Completed:11/03/2023

Kathy Smith

11/03/2023 1:52 PM Approved and released by: Project Manager II: **Kathy E. Smith**

The electronic signature above is the equivalent of a handwritten signature. This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

Case Narrative Arcadis U.S., Inc. Lot Number: YI30001

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report. Where sampling is conducted by the client, results relate to the accuracy of the information provided, and as the samples are received.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Additionally, the DoD QSM version 5.4 has been followed for these samples. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs, the DoD QSM, or policies are qualified on the results page or discussed below.

Pace is a DoD/DOE accredited laboratory; however, the following analyses are currently not listed on our DoD/DOE scope of accreditation: Drinking Water: pH EPA 150.1, Turbidity EPA 180.1, Metals EPA 200.7 & 200.8, Mercury EPA 245.1, Anions EPA 300.0, Cyanide EPA 335.4, Nitrates EPA 353.2, Orthophosphate & Phosphorus EPA 365.1, EDB/DBCP EPA 504.1, HPC SIMPLATE, Color SM 2120 B-2011, Alkalinity SM 2320 B-2011, Specific Conductance SM 2510 B-2011, Residue-filterable (TDS) SM 2540 C, Calcium Hardness (CaCO2) SM 3500-Ca B-2011, TRC SM 4500 Cl G-2011, pH SM 4500 H=B-2011, E.Coli, Total Coliform. Non-Potable Water: Metals EPA 200.7, Strontium EPA 200.8, Chlorate EPA 300.0, Cyanide EPA 335.4, Phenolics EPA 420.4, 2-Methyl-4,6-Dinitrophenol EPA 625.1, Propane RSK-175, Specific Conductance SM 2510 B-2011, Salinity SM2520 B, Residue- total SM 2540 B, Sulfite SM 4500 SO32- B-2011, Amenable Cyanide SM 4500-CN- G-2011, BOD & CBOD SM 5210 B, MBAS SM 5540 C-2011, Boron & Titanium SW-846 6010D, Boron, Molybdenum, & Titanium SW-846 6020B, Alcohols & Glycols SW-846 8015C, Pentachlorophenol SW-846 8151A, Ethyl Acetate, Hexane, & n-Hexane SW-846 8260D, SVOC 1,4-Dioxane, 4-Dimethyl aminoazobenzene, 1,4-Naphthoquinone, 3,5-Dinitroaniline, PETN SW-846 8270E, Amenable Cyanide SW-846 9012B. Solid and Chemical Materials: Boron & Titanium SW-846 6010D, Molybdenum SW-846 6020B, Ethylene Glycol SW-846 8015B, Pentachlorophenol SW-846 8151A, Chloroprene SW-846 8260B, SVOC 1,4-Dioxane, 1,3,5-Trinitrobenzene, 1,4- Naphthoquinone, 1,4-Phenylenediamine, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 3-Methylcholanthrene, 4-Aminobiphenyl, 4-Dimethyl aminoazobenzene, 4-Nitroquinoline-1-oxide, 7,12-Dimethylbenzo(a)anthracene, Chlorobenzilate, Diallate, Ethyl methanesulfonate, Isodrin, Isosafrole, Methyl methanesulfonate, n-Nitrosomethylethylamine, n-Nitrosomorpholine, n-Nitrosopiperidine, Piperonyl butoxide, Pronamide, Safrole, 3,5- Dinitroaniline, PETN SW-846 8270E, Oil & Grease SW-846 9071B.

Pace is a TNI accredited laboratory; however, the following analyses are currently not listed on our TNI scope of accreditation: E. coli and Total coliforms SM 9223 B-2004, Solid Chemical Material: TOC Walkley-Black, Biological Tissue: All, Non-Potable Water: SGT-HEM EPA 1664B, Silica EPA 200.7, Boron, Calcium, Silicon, Strontium EPA 200.8, Bicarbonate, Carbonate, and Hydroxide Alkalinity SM 2320 B-2011, SM 9221 C E-2006 & SM 9222D-2006, Strontium SW-846 6010D, VOC SM 6200 B-2011, Fecal Coliform Colilert-18. If you have any questions regarding this report, please contact the Pace Project Manager listed on the cover page.

SC DHEC No: 32010001	NELAC No: E87653	NC DENR No: 329	NC Field Parameters No: 5639
----------------------	------------------	-----------------	------------------------------

Volatiles

The LCS associated with batch 87040 had 1,1-Dichloroethane recovered below the acceptance limits. This demonstrates a low bias on analytical results. Results for this compound in the samples associated with this batch should be considered estimated.

Surrogate recovery for the following sample was outside the upper control limit: YI30001-005, YI30001-007. These samples were re-analyzed outside of holding time and all data has been reported.

Samples YI30001-010, YI30001-011, YI30001-014 had surrogates recovered above the acceptance limits. This reflects a high bias for compounds associated with this surrogate. The data has been reported.

Pesticides

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 86556 exceeded acceptance criteria for the following analyte: Toxaphene. This analyte was biased high and was not detected in the samples affected.

Semivolatiles

The MS/MSD associated with samples YI30001-001, YI30001-010, YI30001-011 had compounds recovered outside of the acceptance limits. The LCS was recovered within the required acceptance limits; therefore, this demonstrates a matrix effect and data quality is not impacted.

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Manual Integration Summary Arcadis U.S., Inc. Lot Number: YI30001 Project Name: JBC Air, LTM Project Number:

Where applicable, analytes for which manual integration occurred have been flagged with the following:

Qualifier	Technical Justification	Qualifier	Technical Justification	Qualifier	Technical Justification
M-01	Split peak	M-07	Low fit	M-13	Error
M-02	Peak tailing	M-08	Peak not found	M-14	Baseline
M-03	Incorrect auto integration	M-09	Analyte not Identified by the Data System	M-15	Other
M-04	Poor chromatography	M-10	Analyte misidentified by the Data System	M-16	Retention time shift
M-05	Manually assigned peak	M-11	Invalid integration	M-17	Shouldering
M-06	Wrong isomer	M-12	Wrong peak		Ū.

A summary of instances where manual integration occurred is included below:

Method	Sample	Run Number	Parameter	Qualifier
8260D	YI30001-007	1	cis-1,2-Dichloroethene	M-03
8260D	YI30001-007	2	Chloromethane (Methyl chloride)	M-03
8260D	YI30001-017	1	Acetone	M-03
8260D	YQ87040-002	1	Acetone	M-03
8260D	YQ87040-002	1	Dichlorodifluoromethane	M-03
8260D	YQ87040-002	1	Trichlorofluoromethane	M-03
8260D	YQ87294-003	1	Trichlorofluoromethane	M-03
8260D	YQ87165-002	1	Acetone	M-03
8260D	YQ87165-002	1	Dichlorodifluoromethane	M-03
8260D	YQ87165-002	1	Methyl acetate	M-03
8260D	YQ87165-002	1	Trichlorofluoromethane	M-03

If you have any questions regarding this report, please contact the Pace Project Manager listed on the cover page.

Sample Summary Arcadis U.S., Inc. Lot Number: YI30001 Project Name: JBC Air, LTM Project Number:

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	Z2-02_0923	Aqueous	09/28/2023 1546	09/29/2023
002	Z2-04_0923	Aqueous	09/28/2023 1451	09/29/2023
003	Z2-04_0923-a	Aqueous	09/28/2023 1451	09/29/2023
004	Z2-12_0923	Aqueous	09/29/2023 0920	09/29/2023
005	Z2-32_0923	Aqueous	09/29/2023 1025	09/29/2023
006	Z2-36_0923	Aqueous	09/28/2023 1301	09/29/2023
007	Z2-T3_0923	Aqueous	09/29/2023 1255	09/29/2023
008	Z2-138-01_0923	Aqueous	09/29/2023 1200	09/29/2023
009	TB08_0923-C	Aqueous	09/28/2023 1301	09/29/2023
010	Z2-11_0923	Aqueous	09/28/2023 1655	09/29/2023
011	Z2-45_0923	Aqueous	09/28/2023 1310	09/29/2023
012	Z2-45_0923-a	Aqueous	09/28/2023 1310	09/29/2023
013	Z2-50_0923	Aqueous	09/28/2023 1515	09/29/2023
014	Z2-52R_0923	Aqueous	09/28/2023 1600	09/29/2023
015	Z2-53_0923	Aqueous	09/28/2023 1440	09/29/2023
016	Z2-54_0923	Aqueous	09/29/2023 1415	09/29/2023
017	MW-01-129_0923	Aqueous	09/29/2023 1555	09/29/2023
018	MW-01-129_0923-a	Aqueous	09/29/2023 1555	09/29/2023

(18 samples)

Detection Summary

Arcadis U.S., Inc.

Lot Number: YI30001

Project Name: JBC Air, LTM

Project Number:

Sample	Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
002	Z2-04_0923	Aqueous	cis-1,2-Dichloroethene	8260D	11		ug/L	14
002	Z2-04_0923	Aqueous	trans-1,2-Dichloroethene	8260D	0.51	J	ug/L	14
002	Z2-04_0923	Aqueous	Trichloroethene	8260D	3.9		ug/L	15
003	Z2-04_0923-a	Aqueous	cis-1,2-Dichloroethene	8260D	11		ug/L	17
003	Z2-04_0923-a	Aqueous	trans-1,2-Dichloroethene	8260D	0.45	J	ug/L	17
003	Z2-04_0923-a	Aqueous	Trichloroethene	8260D	3.9		ug/L	18
006	Z2-36_0923	Aqueous	cis-1,2-Dichloroethene	8260D	1.5		ug/L	27
007	Z2-T3_0923	Aqueous	Tetrachloroethene	8260D	0.47	JQ	ug/L	30
007	Z2-T3_0923	Aqueous	Trichloroethene	8260D	0.60	JQ	ug/L	31
010	Z2-11_0923	Aqueous	cis-1,2-Dichloroethene	8260D	0.79	JQ	ug/L	38
011	Z2-45_0923	Aqueous	trans-1,2-Dichloroethene	8260D	0.81	JQ	ug/L	41
011	Z2-45_0923	Aqueous	Vinyl chloride	8260D	26	Q	ug/L	42
012	Z2-45_0923-a	Aqueous	trans-1,2-Dichloroethene	8260D	0.83	J	ug/L	44
012	Z2-45_0923-a	Aqueous	Vinyl chloride	8260D	25		ug/L	45
013	Z2-50_0923	Aqueous	cis-1,2-Dichloroethene	8260D	0.64	J	ug/L	46
017	MW-01-129_0923	Aqueous	Ethylbenzene	8260D	8.3		ug/L	58
017	MW-01-129_0923	Aqueous	Isopropylbenzene	8260D	1.8		ug/L	58
017	MW-01-129_0923	Aqueous	Naphthalene	8260D	62		ug/L	58
017	MW-01-129_0923	Aqueous	Xylenes (total)	8260D	3.6		ug/L	59
017	MW-01-129_0923	Aqueous	Naphthalene	8270E (SIM)	32		ug/L	60
018	MW-01-129_0923-a	Aqueous	Cyclohexane	8260D	0.47	J	ug/L	61
018	MW-01-129_0923-a	Aqueous	Ethylbenzene	8260D	8.6		ug/L	61
018	MW-01-129_0923-a	Aqueous	Isopropylbenzene	8260D	1.8		ug/L	61
018	MW-01-129_0923-a	Aqueous	Naphthalene	8260D	60		ug/L	61
018	MW-01-129_0923-a	Aqueous	Xylenes (total)	8260D	3.6		ug/L	62
018	MW-01-129_0923-a	Aqueous	Naphthalene	8270E (SIM)	30		ug/L	63

(26 detections)

Volatile Organic Compounds by GC/MS

Client: Arcadis U.S., Inc.		J -		Compounds		•	Laboratory II	D: YI30001	-001		
Description: Z2-02 0923							,	k: Aqueou			
Date Sampled:09/28/2023 1546		Project N	ama: I	BC Air, LTM			Math	. Aqueou	3		
		•		BO AII, ETM							
Date Received: 09/29/2023		Project Nur	nber:								
RunPrep Method15030B	Analytical Method 8260D	Dilution 1		/sis Date Analyst /2023 0350 DPH	Prep	Date	Batch 87040				
Parameter		C/ Numb	AS er	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Acetone		67-64	-1	8260D	10	U	20	10	5.0	ug/L	1
Benzene		71-43	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Bromodichloromethane		75-27	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Bromoform		75-25	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Bromomethane (Methyl bromide)		74-83	-9	8260D	0.80	U	2.0	0.80	0.40	ug/L	1
2-Butanone (MEK)		78-93	-3	8260D	4.0	U	10	4.0	2.0	ug/L	1
Carbon disulfide		75-15	i-0	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Carbon tetrachloride		56-23	-5	8260D	0.80		1.0	0.80	0.40	ug/L	1
Chlorobenzene		108-90		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chloroethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L	1
Chloroform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chloromethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.50	ug/L	1
Cyclohexane		110-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DB	CP)	96-12		8260D	0.80		1.0	0.80	0.40	ug/L	1
Dibromochloromethane	.,	124-48		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dibromoethane (EDB)		106-93		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dichlorobenzene		95-50		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,3-Dichlorobenzene		541-73		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,4-Dichlorobenzene		106-46		8260D	0.80		1.0	0.80	0.40	ug/L	1
Dichlorodifluoromethane		75-71		8260D	1.2		2.0	1.2	0.40	ug/L	1
1,1-Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.00	ug/L	1
1,2-Dichloroethane		107-06		8260D	0.80		1.0	0.80	0.40	ug/L	
1,1-Dichloroethene		75-35		8260D	0.80		1.0	0.80	0.40	ug/L	1
cis-1,2-Dichloroethene		156-59		8260D	0.80		1.0	0.80	0.40	ug/L	1
trans-1,2-Dichloroethene		156-60		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dichloropropane		78-87		8260D	0.80		1.0	0.80	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-01		8260D	0.80		1.0	0.80	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-01		8260D 8260D	0.80					-	
		10001-02		8260D 8260D	0.80		1.0 1.0	0.80 0.80	0.40	ug/L	1
Ethylbenzene									0.40	ug/L	1
2-Hexanone Isopropylbenzene		591-78 98-82		8260D 8260D	4.0 0.80		10 1.0	4.0 0.80	2.0	ug/L ug/L	1 1
Methyl acetate		79-20		8260D	0.80		1.0	0.80	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-04		8260D	0.80		1.0	0.80	0.40		1
,		1034-04		8260D 8260D	4.0		1.0		0.40	ug/L	
4-Methyl-2-pentanone								4.0	2.0	ug/L	1
Methylcyclohexane		108-87		8260D	0.80		5.0	0.80	0.40	ug/L	1
Methylene chloride		75-09		8260D	0.80		1.0	0.80	0.40	ug/L	1
Naphthalene		91-20		8260D	0.80		1.0	0.80	0.40	ug/L	1
Styrene		100-42		8260D	0.82		1.0	0.82	0.41	ug/L	
1,1,2,2-Tetrachloroethane		79-34		8260D	0.80		1.0	0.80	0.40	ug/L	1
Tetrachloroethene		127-18		8260D	0.80		1.0	0.80	0.40	ug/L	1
		108-88		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroetha	ne	76-13		8260D	0.84		1.0	0.84	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,1,1-Trichloroethane		71-55	-6	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
LOQ = Limit of Quantitation B =	Detected in the method blanl	E – Ouen	titation of	compound exceeded the	calibration	rance	DL = Detection Lin	nit		= Surroga	ite failur
	Recovery is out of criteria			een two GC columns exc		ange	J = Estimated resu			= Surroga = LCS/LC	
	Reported on wet weight bas									= MS/MS	

Volatile Organic Compounds by GC/MS

Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-001		
Description: Z2-02_0923							Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1546		Project Na	ame: JBC .	Air, LTM							
Date Received: 09/29/2023	I	Project Num	nber:								
RunPrep Method15030B	Analytical Method 8260D			Date Analys 3 0350 DPH	t Prep	o Date	Batch 87040				
Parameter		CA Numbe	AS A er	nalytical Method	Result	Q	LOQ	LOD	DL	Units	Rur
1,1,2-Trichloroethane		79-00·	-5	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01·	-6	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20	-7	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Surrogate		Run 1 A Recovery	Acceptanc Limits	e							
1,2-Dichloroethane-d4		105	81-118								
Bromofluorobenzene		90	85-114								
Toluene-d8		97	89-112								
Dibromofluoromethane		108	80-119								

U = Not detected at or above the LOD N = Recovery is of				
0 = Not detected at of above the LOD $N = Recovery is detected at of above the LOD$	ut of criteria P = The RPD bety	ween two GC columns exceeds 40% J = Estim	nated result < LOQ and \geq DL L = LCS/LCSI	J failure
H = Out of holding time W = Reported on	wet weight basis LOD = Limit of De	etection	S = MS/MSD	failure

Semivolatile Organic Compounds by GC/MS (SIM)

		0	•	-	\				
Client: Arcadis U.S., Inc.				I	Laboratory I	D: YI30001	-001		
Description: Z2-02_0923					Matr	ix: Aqueou	S		
Date Sampled:09/28/2023 1546		Project Na	ame: JBC Air, LTM						
Date Received: 09/29/2023	F	Project Nun	nber:						
RunPrep Method13520C	Analytical Method 8270E (SIM)	Dilution 1	Analysis Date Analys 10/12/2023 1732 JCG	•	Batch 30 86383				
Parameter		C/ Numb	AS Analytical er Method	Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86	6-5 8270E (SIM)	0.098 US	0.98	0.098	0.027	ug/L	1
Surrogate		Run 1 A Recovery	Acceptance Limits						
Fluoranthene-d10		92	23-154						
2-Methylnaphthalene-d10		79	15-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E=Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Organochlorine	Pesticides	by GC
organioonnorme	1 03000005	Ny = 00

Client: Arcadis U.S., Inc.						Laboratory II	D: YI30001	-001		
Description: Z2-02_0923						Matri	c: Aqueou	IS		
Date Sampled:09/28/2023 1546		Project Na	ame: JBC Air, LTM							
Date Received: 09/29/2023	I	Project Num	nber:							
RunPrep Method13520C	Analytical Method 8081B		Analysis Date Analysis 10/04/2023 2232 MEZ	•		Batch 1530 86402				
Parameter		CA Numbe		Result	Q	LOQ	LOD	DL	Units	Ru
Aldrin		309-00-	2 8081B	0.040	J	0.050	0.040	0.020	ug/L	1
gamma-BHC (Lindane)		58-89	-9 8081B	0.040 l	J	0.050	0.040	0.017	ug/L	1
alpha-BHC		319-84-	6 8081B	0.030 l	J	0.040	0.030	0.015	ug/L	1
beta-BHC		319-85-	7 8081B	0.030 l	J	0.040	0.030	0.015	ug/L	1
delta-BHC		319-86-	8 8081B	0.030 l	J	0.040	0.030	0.015	ug/L	1
cis-Chlordane		5103-71	-9 8081B	0.030 l	J	0.040	0.030	0.015	ug/L	1
trans-Chlordane		5103-74	-2 8081B	0.030	J	0.040	0.030	0.015	ug/L	1
4,4'-DDD		72-54	-8 8081B	0.030 l	J	0.040	0.030	0.015	ug/L	1
4,4'-DDE		72-55	-9 8081B	0.040 l	J	0.050	0.040	0.020	ug/L	1
4,4'-DDT		50-29·	-3 8081B	0.040 l	J	0.050	0.040	0.020	ug/L	1
Dieldrin		60-57	-1 8081B	0.030 (J	0.040	0.030	0.015	ug/L	1
Endosulfan I		959-98-	8 8081B	0.030 (J	0.040	0.030	0.015	ug/L	1
Endosulfan II		33213-65-	9 8081B	0.030 (J	0.040	0.030	0.015	ug/L	1
Endosulfan sulfate		1031-07	-8 8081B	0.030 (J	0.040	0.030	0.015	ug/L	1
Endrin		72-20	-8 8081B	0.030 l	J	0.040	0.030	0.015	ug/L	1
Endrin aldehyde		7421-93	-4 8081B	0.030 l	J	0.040	0.030	0.015	ug/L	1
Endrin ketone		53494-70-	-5 8081B	0.030 l	J	0.040	0.030	0.015	ug/L	1
Heptachlor		76-44	-8 8081B	0.050 l	J	0.060	0.050	0.021	ug/L	1
Heptachlor epoxide		1024-57	-3 8081B	0.040 l	J	0.050	0.040	0.016	ug/L	1
Methoxychlor		72-43	-5 8081B	0.050 l	J	0.16	0.050	0.021	ug/L	1
Toxaphene		8001-35	-2 8081B	0.60 U	JL	0.80	0.60	0.30	ug/L	1
Surrogate		Run 1 A Recovery	Acceptance Limits							
Decachlorobiphenyl		57	20-122							
Tetrachloro-m-xylene		93	44-124							

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Volatile Organic Compounds by GC/MS

Client: Arcadis U.S., Inc.				Compounds			Laboratory I	D: YI30001	-002			
Description: Z2-04_0923							Matrix: Aqueous					
Date Sampled:09/28/2023 1451		Project N	ama' I	BC Air, LTM		Wath	. Aqueeu	0				
•				DO AII, LIM								
Date Received: 09/29/2023	Р	roject Nun	nber:									
RunPrep MethodAna15030B	llytical Method 8260D	Dilution 1		ysis Date Analyst /2023 0415 DPH	Prep	Date	Batch 87040					
Parameter		C/ Numb	AS er	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run	
Acetone		67-64	-1	8260D	10	U	20	10	5.0	ug/L	1	
Benzene		71-43	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1	
Bromodichloromethane		75-27	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1	
Bromoform		75-25	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1	
Bromomethane (Methyl bromide)		74-83	-9	8260D	0.80	U	2.0	0.80	0.40	ug/L	1	
2-Butanone (MEK)		78-93	-3	8260D	4.0	U	10	4.0	2.0	ug/L	1	
Carbon disulfide		75-15	-0	8260D	0.80	U	1.0	0.80	0.40	ug/L	1	
Carbon tetrachloride		56-23	-5	8260D	0.80	U	1.0	0.80	0.40	ug/L	1	
Chlorobenzene		108-90	-7	8260D	0.80	U	1.0	0.80	0.40	ug/L	1	
Chloroethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L	1	
Chloroform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L	1	
Chloromethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.50	ug/L	1	
Cyclohexane		110-82		8260D	0.80		1.0	0.80	0.40	ug/L	1	
1,2-Dibromo-3-chloropropane (DBCP)		96-12		8260D	0.80	-	1.0	0.80	0.40	ug/L	1	
Dibromochloromethane		124-48		8260D	0.80 U 0.80 U		1.0	0.80	0.40	ug/L	1	
1,2-Dibromoethane (EDB)		106-93		8260D	0.80		1.0	0.80	0.40	ug/L	1	
1,2-Dichlorobenzene		95-50		8260D	0.80		1.0	0.80		ug/L	1	
1,3-Dichlorobenzene		541-73		8260D	0.80 U		1.0	0.80	0.40	ug/L	1	
1,4-Dichlorobenzene				8260D	0.80 U		1.0	0.80	0.40	ug/L	1	
Dichlorodifluoromethane		106-46-7 75-71-8		8260D	1.2 U		2.0	1.2	0.40			
									0.60	ug/L	1	
1,1-Dichloroethane		75-34-3		8260D	0.80 UL		1.0	0.80	0.40	ug/L	1	
1,2-Dichloroethane		107-06-2		8260D	0.80 U		1.0	0.80	0.40	ug/L	1	
1,1-Dichloroethene		75-35-4		8260D	0.80 U		1.0	0.80	0.40	ug/L	1	
cis-1,2-Dichloroethene		156-59-2		8260D	11 0.51 J		1.0	0.80	0.40	ug/L	1	
trans-1,2-Dichloroethene		156-60-5		8260D			1.0	0.80	0.40	ug/L	1	
1,2-Dichloropropane		78-87		8260D	0.80		1.0	0.80	0.40	ug/L	1	
cis-1,3-Dichloropropene		10061-01		8260D	0.80		1.0	0.80	0.40	ug/L	1	
trans-1,3-Dichloropropene		10061-02		8260D	0.80		1.0	0.80	0.40	ug/L	1	
Ethylbenzene		100-41		8260D	0.80		1.0	0.80	0.40	ug/L	1	
2-Hexanone		591-78		8260D	4.0		10	4.0	2.0	ug/L	1	
Isopropylbenzene		98-82		8260D	0.80		1.0	0.80	0.40	ug/L	1	
Methyl acetate		79-20		8260D	0.80		1.0	0.80	0.40	ug/L	1	
Methyl tertiary butyl ether (MTBE)		1634-04	-4	8260D	0.80		1.0	0.80	0.40	ug/L	1	
4-Methyl-2-pentanone		108-10	-1	8260D	4.0	U	10	4.0	2.0	ug/L	1	
Methylcyclohexane		108-87-2		8260D	0.80 U		5.0	0.80	0.40	ug/L	1	
Methylene chloride		75-09-2		8260D	0.80 U		1.0	0.80	0.40	ug/L	1	
Naphthalene		91-20-3		8260D	0.80 U		1.0	0.80	0.40	ug/L	1	
Styrene		100-42-5		8260D	0.82 U		1.0	0.82	0.41	ug/L	1	
1,1,2,2-Tetrachloroethane		79-34-5		8260D	0.80 U		1.0	0.80	0.40	ug/L	1	
Tetrachloroethene		127-18	-4	8260D	0.80 U		1.0	0.80	0.40	ug/L	1	
Toluene		108-88	-3	8260D	0.80 U		1.0	0.80	0.40	ug/L	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-13	-1	8260D	0.84 U		1.0	0.84	0.42	ug/L	1	
1,2,4-Trichlorobenzene		120-82	-1	8260D	0.80		1.0	0.80	0.40	ug/L	1	
1,1,1-Trichloroethane		71-55	-6	8260D	0.80	U	1.0	0.80	0.40	ug/L	1	
LOQ = Limit of Quantitation B = Detecte	ed in the method blank	E = Quant	itation of	compound exceeded the	calibration	range	DL = Detection Lim	iit	Q	= Surroga	te failur	
	ery is out of criteria			een two GC columns exc		-	J = Estimated resu			= LCS/LC		
H = Out of holding time W = Report	ed on wet weight basis	LOD = Lin	nit of Det	ection					S	= MS/MS) failure	

Volatile Organic Compounds by GC/MS

	Volati	ie orga			5				
Client: Arcadis U.S., Inc					Laboratory I	D: YI30001	-002		
Description: Z2-04_0923					Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1451		Project Na	me: JBC Air, LTM						
Date Received: 09/29/2023		Project Num	ber:						
RunPrep Method15030B	Analytical Method 8260D		Analysis Date Analyst 10/11/2023 0415 DPH	Prep Date	Batch 87040				
Parameter		CA Numbe	-	Result Q	LOQ	LOD	DL	Units	Ru
1,1,2-Trichloroethane		79-00-	5 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01-	6 8260D	3.9	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20-	7 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Surrogate	Q %	Run 1 A Recovery	cceptance Limits						
1,2-Dichloroethane-d4		116	81-118						
Bromofluorobenzene		99	85-114						
Toluene-d8		103	89-112						
Dibromofluoromethane		118	80-119						
Dibromofluoromethane		118	80-119						

	LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
H = Out of holding time W = Reported on wet weight basis LOD = Limit of Detection S = MS/MSD	U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
	H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Semivolatile Organic Compounds by GC/MS (SIM)

Client: Arcadis U.S., Inc.					Laboratory II	D. YI30001	-002		
Description: Z2-04_0923					Matri	x: Aqueou	S		
Date Sampled:09/28/2023 1451	Pr	oject Name	e: JBC Air, LTM						
Date Received: 09/29/2023	Proj	ect Numbe	er:						
Run Prep Method	Analytical Method Dil	lution A	nalysis Date Analys	t Prep Date	Batch				
1 3520C	8270E (SIM)	2 10	/12/2023 1756 JCG	10/03/2023 13	30 86383				
Parameter		CAS Number	Analytical Method	Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86-5	8270E (SIM)	0.21 U	2.1	0.21	0.059	ug/L	1
Surrogate	Rui Q % Rec		eptance Limits						
Fluoranthene-d10	8	31 2	23-154						
2-Methylnaphthalene-d10	7	'6 1	15-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E=Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Volatile Organic Compounds by GC/MS

Client: Arcadis U.S., Inc.			compounds			Laboratory IE	D: YI30001	-003		
Description: Z2-04_0923-a							: Aqueou			
Date Sampled:09/28/2023 1451	Project N	ama: II	BC Air, LTM			Wath	. Aqueou	3		
•										
Date Received: 09/29/2023	Project Nur	nber:								
RunPrep MethodAnalytical Method15030B8260D	Dilution 1	-	sis Date Analyst 2023 0440 DPH	Prep	Date	Batch 87040				
Parameter	C/ Numb	AS er	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Acetone	67-64	-1	8260D	10	U	20	10	5.0	ug/L	1
Benzene	71-43	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Bromodichloromethane	75-27	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Bromoform	75-25	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83	-9	8260D	0.80	U	2.0	0.80	0.40	ug/L	1
2-Butanone (MEK)	78-93	-3	8260D	4.0	U	10	4.0	2.0	ug/L	1
Carbon disulfide	75-15	-0	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Carbon tetrachloride	56-23	-5	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Chlorobenzene	108-90		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chloroethane	75-00		8260D	0.80		2.0	0.80	0.40	ug/L	1
Chloroform	67-66		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87		8260D	1.0		2.0	1.0	0.50	ug/L	1
Cyclohexane	110-82		8260D	0.80		1.0	0.80	0.30	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12		8260D 8260D		-	1.0	0.80	0.40	ug/L	1
Dibromochloromethane	124-48		8260D 8260D	0.80 U 0.80 U		1.0	0.80	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93		8260D	0.80		1.0	0.80		ug/L	1
1,2-Dichlorobenzene	95-50		8260D 8260D			1.0	0.80	0.40	-	1
1,3-Dichlorobenzene	541-73		8260D 8260D	0.80 U 0.80 U		1.0	0.80	0.40	ug/L	
								0.40	ug/L	1
1,4-Dichlorobenzene	106-46		8260D	0.80 U		1.0	0.80	0.40	ug/L	1
Dichlorodifluoromethane	75-71		8260D	1.2 U		2.0	1.2	0.60	ug/L	1
1,1-Dichloroethane	75-34		8260D	0.80 UL		1.0	0.80	0.40	ug/L	1
1,2-Dichloroethane	107-06		8260D	0.80 U		1.0	0.80	0.40	ug/L	1
1,1-Dichloroethene	75-35		8260D	0.80 U		1.0	0.80	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59		8260D	11		1.0	0.80	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60		8260D	0.45		1.0	0.80	0.40	ug/L	1
1,2-Dichloropropane	78-87		8260D	0.80		1.0	0.80	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01		8260D	0.80		1.0	0.80	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02		8260D	0.80		1.0	0.80	0.40	ug/L	1
Ethylbenzene	100-41	-4	8260D	0.80		1.0	0.80	0.40	ug/L	1
2-Hexanone	591-78	-6	8260D	4.0		10	4.0	2.0	ug/L	1
Isopropylbenzene	98-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
Methyl acetate	79-20	-9	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
4-Methyl-2-pentanone	108-10	-1	8260D	4.0	U	10	4.0	2.0	ug/L	1
Methylcyclohexane	108-87	-2	8260D	0.80 U		5.0	0.80	0.40	ug/L	1
Methylene chloride	75-09	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Naphthalene	91-20-3		8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Styrene	100-42-5		8260D	0.82 U		1.0	0.82	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5		8260D	0.80 U		1.0	0.80	0.40	ug/L	1
Tetrachloroethene	127-18	-4	8260D	0.80 U		1.0	0.80	0.40	ug/L	1
Toluene	108-88	-3	8260D	0.80 U		1.0	0.80	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13		8260D	0.84 U		1.0	0.84	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,1,1-Trichloroethane	71-55		8260D	0.80		1.0	0.80	0.40	ug/L	1
LOQ = Limit of Quantitation B = Detected in the method blan			compound exceeded the		range	DL = Detection Lim			= Surroga	
U = Not detected at or above the LOD N = Recovery is out of criteria H = Out of holding time W = Reported on wet weight bas			een two GC columns exc ection	eeds 40%		J = Estimated resul	It < LOQ and		= LCS/LCS = MS/MSE	

	Volati				5				
Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	-003		
Description: Z2-04_0923-a					Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1451		Project Na	me: JBC Air, LTM						
Date Received: 09/29/2023		Project Num	ber:						
RunPrep Method15030B	Analytical Method 8260D		Analysis Date Analyst 10/11/2023 0440 DPH	Prep Date	Batch 87040				
Parameter		CA Numbe		Result Q	LOQ	LOD	DL	Units	Rur
1,1,2-Trichloroethane		79-00-	5 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01-	6 8260D	3.9	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20-	7 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Surrogate	Q %	Run 1 A Recovery	cceptance Limits						
1,2-Dichloroethane-d4		107	81-118						
Bromofluorobenzene		87	85-114						
Toluene-d8		99	89-112						
Dibromofluoromethane		113	80-119						

U = Not detected at or above the LOD N = Recovery is of				
0 = Not detected at of above the LOD $N = Recovery is detected at of above the LOD$	ut of criteria P = The RPD bety	ween two GC columns exceeds 40% J = Estim	nated result < LOQ and \geq DL L = LCS/LCSI	J failure
H = Out of holding time W = Reported on	wet weight basis LOD = Limit of De	etection	S = MS/MSD	failure

Client: Arcadis U.S., Inc							Laboratory II	D: YI30001	-004		
Description: Z2-12_0923							Matri	x: Aqueou	s		
Date Sampled:09/29/2023 0920		Proiect N	ame: J	BC Air, LTM				•			
Date Received: 09/29/2023		Project Nur		- ,							
RunPrep Method15030B	Analytical Method 8260D	Dilution 1		sis Date Analyst 2023 0504 DPH	t Prej	p Date	Batch 87040				
			AS	Analytical							
Parameter		Numb		Method	Result		LOQ	LOD	DL	Units	
Acetone		67-64		8260D	10	U	20	10	5.0	ug/L	
Benzene		71-43		8260D	0.80		1.0	0.80	0.40	ug/L	
Bromodichloromethane		75-27		8260D	0.80		1.0	0.80	0.40	ug/L	
Bromoform		75-25		8260D	0.80		1.0	0.80	0.40	ug/L	
Bromomethane (Methyl bromide))	74-83	3-9	8260D	0.80	U	2.0	0.80	0.40	ug/L	
2-Butanone (MEK)		78-93-3 8260D 4.0 U		U	10	4.0	2.0	ug/L	1		
Carbon disulfide		75-15	5-0	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Carbon tetrachloride		56-23	8-5	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Chlorobenzene		108-90)-7	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Chloroethane		75-00)-3	8260D	0.80	U	2.0	0.80	0.40	ug/L	1
Chloroform		67-66	6-3	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Chloromethane (Methyl chloride)		74-87	7-3	8260D	1.0	U	2.0	1.0	0.50	ug/L	1
Cyclohexane		110-82	2-7	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (D	BCP)	96-12	2-8	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Dibromochloromethane	,	124-48	8-1	8260D	0.80	U	1.0	0.80	0.40	ug/L	
1,2-Dibromoethane (EDB)		106-93	8-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	
1,2-Dichlorobenzene		95-50)-1	8260D	0.80	U	1.0	0.80	0.40	ug/L	
1,3-Dichlorobenzene		541-73	8-1	8260D	0.80	U	1.0	0.80	0.40	ug/L	
1,4-Dichlorobenzene		106-46	6-7	8260D	0.80	U	1.0	0.80	0.40	ug/L	
Dichlorodifluoromethane		75-71		8260D	1.2		2.0	1.2	0.60	ug/L	
1,1-Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.40	ug/L	
1,2-Dichloroethane		107-06		8260D	0.80		1.0	0.80	0.40	ug/L	
1.1-Dichloroethene		75-35		8260D	0.80		1.0	0.80	0.40	ug/L	
cis-1,2-Dichloroethene		156-59		8260D	0.80	-	1.0	0.80	0.40	ug/L	
trans-1,2-Dichloroethene		156-60		8260D	0.80		1.0	0.80	0.40	ug/L	
1,2-Dichloropropane		78-87		8260D	0.80		1.0	0.80	0.40	ug/L	
cis-1,3-Dichloropropene		10061-01		8260D	0.80		1.0	0.80	0.40	ug/L	
trans-1,3-Dichloropropene		10061-01		8260D	0.80		1.0	0.80		-	
		10001-02		8260D 8260D	0.80			0.80	0.40	ug/L	
Ethylbenzene 2-Hexanone							1.0		0.40	ug/L	
2-Hexanone Isopropylbenzene		591-78 98-82		8260D 8260D	4.0 0.80		10 1.0	4.0 0.80	2.0	ug/L ug/L	
		90-02 79-20		8260D 8260D	0.80		1.0	0.80	0.40		
Methyl acetate	``								0.40	ug/L	
Methyl tertiary butyl ether (MTBE	.)	1634-04		8260D	0.80		1.0	0.80	0.40	ug/L	
4-Methyl-2-pentanone		108-10		8260D	4.0		10	4.0	2.0	ug/L	
Methylcyclohexane		108-87		8260D	0.80		5.0	0.80	0.40	ug/L	
Methylene chloride		75-09		8260D	0.80		1.0	0.80	0.40	ug/L	
Naphthalene		91-20		8260D	0.80		1.0	0.80	0.40	ug/L	
Styrene		100-42		8260D	0.82		1.0	0.82	0.41	ug/L	
1,1,2,2-Tetrachloroethane		79-34		8260D	0.80		1.0	0.80	0.40	ug/L	
Tetrachloroethene		127-18		8260D	0.80		1.0	0.80	0.40	ug/L	
Toluene		108-88		8260D	0.80		1.0	0.80	0.40	ug/L	
1,1,2-Trichloro-1,2,2-Trifluoroeth	ane	76-13		8260D	0.84		1.0	0.84	0.42	ug/L	
1,2,4-Trichlorobenzene		120-82		8260D	0.80		1.0	0.80	0.40	ug/L	
1,1,1-Trichloroethane		71-55	5-6	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
	= Detected in the method blank			compound exceeded the		-	DL = Detection Lin			= Surroga	
U = Not detected at or above the LOD N	= Recovery is out of criteria	P = The R	RPD betwe	en two GC columns exc	eeds 40%		J = Estimated resu	ilt < LOQ and ;	≥DL L	= LCS/LC	SD fail

Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	-004		
Description: Z2-12_0923					Matri	x: Aqueou	s		
Date Sampled:09/29/2023 0920		Proiect Na	ame: JBC Air, LTM				-		
Date Received: 09/29/2023		Project Num							
RunPrep Method15030B	Analytical Method 8260D		Analysis Date Analys 10/11/2023 0504 DPH	•	Batch 87040				
Parameter		CA Numbe	S Analytical Pr Method	Result Q	LOQ	LOD	DL	Units	Ru
1,1,2-Trichloroethane		79-00-	-5 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01-	6 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20-	-7 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Surrogate	Q %	Run 1 A Recovery	cceptance Limits						
1,2-Dichloroethane-d4		118	81-118						
Bromofluorobenzene		92	85-114						
Toluene-d8		100	89-112						
Dibromofluoromethane		118	80-119						

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.					Laboratory I	D: VI30001	-004		
				I	,				
Description: Z2-12_0923					Matri	x: Aqueou	S		
Date Sampled:09/29/2023 0920	Pr	oject Name	e: JBC Air, LTM						
Date Received: 09/29/2023	Proje	ect Numbe	r:						
Run Prep Method	Analytical Method Dil	lution Ar	alysis Date Analys	t Prep Date	Batch				
1 3520C	8270E (SIM)	1 10/	12/2023 1821 JCG	10/03/2023 13	30 86383				
Parameter		CAS Number	Analytical Method	Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86-5	8270E (SIM)	0.099 U	0.99	0.099	0.028	ug/L	1
Surrogate	Rui Q % Rec		eptance .imits						
Fluoranthene-d10	1(04 2	3-154						
2-Methylnaphthalene-d10	8	1 1	5-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.						Laboratory I	D: YI30001	-005		
Description: Z2-32_0923						Matri	x: Aqueou	s		
Date Sampled:09/29/2023 1025		Project Na	ame: JI	BC Air, LTM				-		
Date Received: 09/29/2023		Project Nun		207.0., 210						
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	•	vsis Date Analyst 2023 0012 AMR2	Prep Date	Batch 87294				
2 5030B	8260D 8260D	1		2023 0012 AMR2		88182				
2 3030B	8200D	I	10/23/	2023 1318 000		00102				
Parameter		C/ Numb		Analytical Method	Result Q	LOQ	LOD	DL	Units	Ru
Acetone		67-64	-1	8260D	10 UQ	20	10	5.0	ug/L	1
Benzene		71-43	-2	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Bromodichloromethane		75-27	-4	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Bromoform		75-25	-2	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Bromomethane (Methyl bromide)		74-83	-9	8260D	0.80 UQ	2.0	0.80	0.40	ug/L	1
2-Butanone (MEK)		78-93	-3	8260D	4.0 UQ	10	4.0	2.0	ug/L	1
Carbon disulfide		75-15	-0	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Carbon tetrachloride		56-23	-5	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Chlorobenzene		108-90	-7	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Chloroethane		75-00	-3	8260D	0.80 UQ	2.0	0.80	0.40	ug/L	1
Chloroform		67-66	-3	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Chloromethane (Methyl chloride)		74-87	-3	8260D	1.0 UQ	2.0	1.0	0.50	ug/L	1
Cyclohexane		110-82	-7	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBC	P)	96-12		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Dibromochloromethane	,	124-48	-1	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
1,2-Dibromoethane (EDB)		106-93		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
1,2-Dichlorobenzene		95-50		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
1,3-Dichlorobenzene		541-73		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
1,4-Dichlorobenzene		106-46		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Dichlorodifluoromethane		75-71		8260D	1.2 UQ	2.0	1.2	0.40	ug/L	1
1,1-Dichloroethane		75-34		8260D	0.80 UQ	1.0	0.80	0.00	ug/L	1
1,2-Dichloroethane		107-06		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
1,1-Dichloroethene		75-35		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
cis-1,2-Dichloroethene		156-59		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
trans-1,2-Dichloroethene		156-60		8260D 8260D	0.80 UQ	1.0	0.80		ug/L	1
1,2-Dichloropropane		78-87		8260D 8260D	0.80 UQ 0.80 UQ	1.0	0.80	0.40	ug/L	
, , , , , , , , , , , , , , , , , , , ,								0.40	-	1
cis-1,3-Dichloropropene		10061-01		8260D	0.80 UQ 0.80 UQ	1.0	0.80	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-02		8260D		1.0	0.80	0.40	ug/L	1
Ethylbenzene		100-41		8260D 8260D	0.80 UQ 4.0 UQ	1.0 10	0.80	0.40	ug/L	1
2-Hexanone		591-78					4.0	2.0	ug/L	1
Isopropylbenzene		98-82		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Methyl acetate		79-20		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-04		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
4-Methyl-2-pentanone		108-10		8260D	4.0 UQ	10	4.0	2.0	ug/L	1
Methylcyclohexane		108-87		8260D	0.80 UQ	5.0	0.80	0.40	ug/L	1
Methylene chloride		75-09		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Naphthalene		91-20		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Styrene		100-42		8260D	0.82 UQ	1.0	0.82	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-34		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Tetrachloroethene		127-18		8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Toluene		108-88	-3	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethan	e	76-13	-1	8260D	0.84 UQ	1.0	0.84	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82	-1	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
DQ = Limit of Quantitation B = D	etected in the method blanl	E = Quant	itation of	compound exceeded the	calibration range	DL = Detection Lir	nit	Q	= Surroga	te fai
	ecovery is out of criteria			en two GC columns exc	-	J = Estimated resu			= LCS/LCS	

						• • • • • •					
Client: Arcadis U.S., I	nc.					La	boratory I	D: YI30001	-005		
Description: Z2-32_0923							Matri	x: Aqueou	s		
Date Sampled:09/29/2023 102	25	Project I	Name: JBC A	ir, LTM							
Date Received: 09/29/2023		Project Nu	ımber:								
Run Prep Method	Analytical Method	Dilution	Analysis I	Date Ar	nalyst P	rep Date	Batch				
1 5030B	8260D	1	10/13/2023	0012 A	MR2		87294				
2 5030B	8260D	1	10/23/2023	1318 (000		88182				
Parameter		C Num		alytical Method		ılt Q	LOQ	LOD	DL	Units	R
1,1,1-Trichloroethane		71-5	5-6	8260) 0.8	30 UQ	1.0	0.80	0.40	ug/L	
1,1,2-Trichloroethane		79-0	0-5	82600	0.0	30 UQ	1.0	0.80	0.40	ug/L	
Trichloroethene		79-0	1-6	82600	0.0	30 UQ	1.0	0.80	0.40	ug/L	
Trichlorofluoromethane		75-6	9-4	82600) O.8	30 UQ	1.0	0.80	0.40	ug/L	
Vinyl chloride		75-0	1-4	82600	0.0	30 UQ	1.0	0.80	0.40	ug/L	
Xylenes (total)		1330-2	0-7	82600	0.8	30 UQ	1.0	0.80	0.40	ug/L	
Surrogate	Q %	Run 1 Recovery	Acceptance Limits		Run 2 % Recover	Acceptance y Limits	•				
1,2-Dichloroethane-d4		111	81-118	HN	123	81-118					
Bromofluorobenzene		91	85-114	н	102	85-114					
Toluene-d8	N	117	89-112	н	107	89-112					
Dibromofluoromethane		113	80-119	н	114	80-119					

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.						Laboratory	ID: YI30001	-005		
Description: Z2-32_0923						Matr	ix: Aqueou	S		
Date Sampled:09/29/2023 1025		Project Na	ame: JE	BC Air, LTM						
Date Received: 09/29/2023		Project Nun		· · · · · , _ · · · ·						
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1	-	sis Date Analyst 2023 0012 AMR2	Prep Date	Batch 87294				
2 5030B	8260D			2023 1318 CCO		88182				
2 30300	02000	I	10/20/2			00102				
Parameter		CA Numbe		Analytical Method	Result Q	LOQ	LOD	DL	Units	Ru
Acetone		67-64	-1	8260D	10 UHQ	20	10	5.0	ug/L	2
Benzene		71-43	-2	8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Bromodichloromethane		75-27	-4	8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Bromoform		75-25	-2	8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Bromomethane (Methyl bromide)		74-83	-9	8260D	0.80 UHQ	2.0	0.80	0.40	ug/L	2
2-Butanone (MEK)		78-93	-3	8260D	4.0 UHQ	10	4.0	2.0	ug/L	2
Carbon disulfide		75-15	-0	8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Carbon tetrachloride		56-23	-5	8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Chlorobenzene		108-90		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Chloroethane		75-00		8260D	0.80 UHQ	2.0	0.80	0.40	ug/L	2
Chloroform		67-66		8260D	0.96 HJQ	1.0	0.80	0.40	ug/L	2
Chloromethane (Methyl chloride)		74-87		8260D	1.7 HJQ	2.0	1.0	0.50	ug/L	2
Cyclohexane		110-82		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
1,2-Dibromo-3-chloropropane (DBC	:P)	96-12		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Dibromochloromethane	- /	124-48		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
1,2-Dibromoethane (EDB)		106-93		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
1,2-Dichlorobenzene		95-50		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
1,3-Dichlorobenzene		541-73-		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
1,4-Dichlorobenzene		106-46		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Dichlorodifluoromethane		75-71		8260D	1.2 UHQ	2.0	1.2	0.40	ug/L	2
1,1-Dichloroethane		75-34		8260D	0.80 UHQ	1.0	0.80	0.00	ug/L	2
1,2-Dichloroethane		107-06		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
1,1-Dichloroethene		75-35		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
cis-1.2-Dichloroethene		156-59		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
trans-1,2-Dichloroethene		156-60		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
1,2-Dichloropropane		78-87		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
cis-1,3-Dichloropropene		10061-01		8260D	0.80 UHQ	1.0	0.80		ug/L	2
trans-1,3-Dichloropropene		10061-01		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Ethylbenzene		100-41		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
2-Hexanone		591-78		8260D	4.0 UHQ	1.0	4.0	0.40 2.0	ug/L	2
Isopropylbenzene		98-82		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Methyl acetate		79-20		8260D	0.80 UHQ	1.0	0.80		ug/L	2
Methyl tertiary butyl ether (MTBE)		1634-04		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
4-Methyl-2-pentanone		108-10-		8260D	4.0 UHQ	1.0	4.0	0.40	ug/L	2
Methylcyclohexane		108-10		8260D	4.0 UHQ 0.80 UHQ	5.0	4.0 0.80	2.0	ug/L	2
Methylene chloride		75-09		8260D	0.80 UHQ 0.80 UHQ	5.0 1.0	0.80	0.40	ug/L	2
Naphthalene		91-20		8260D	0.80 UHQ 0.80 UHQ	1.0	0.80	0.40	ug/L	2
Styrene		91-20 100-42		8260D	0.80 UHQ 0.82 UHQ	1.0	0.80	0.40 0.41	ug/L	2
,									-	
1,1,2,2-Tetrachloroethane		79-34		8260D		1.0	0.80	0.40	ug/L	2
Tetrachloroethene		127-18		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
Toluene		108-88		8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
1,1,2-Trichloro-1,2,2-Trifluoroethane	9	76-13		8260D	0.84 UHQ	1.0	0.84	0.42	ug/L	2
1,2,4-Trichlorobenzene		120-82	-1	8260D	0.80 UHQ	1.0	0.80	0.40	ug/L	2
DQ = Limit of Quantitation B = D	etected in the method blanl	E = Quant	itation of c	ompound exceeded the	calibration range	DL = Detection Li	mit	Q	= Surroga	te fai
	ecovery is out of criteria			en two GC columns exc	•	J = Estimated res			= LCS/LCS	

Client: Arcadis U.S., Inc.							La	boratory II	D: YI30001	-005		
Description: Z2-32_0923									x: Aqueou			
Date Sampled:09/29/2023 1025		Project N	ame: JBC A	ir, LTN	1				•			
Date Received: 09/29/2023		, Project Nur	mber:									
Run Prep Method	Analytical Method	Dilution	Analysis I	Date A	nalyst	Pre	p Date	Batch				
1 5030B	8260D	1	10/13/2023	0012	AMR2		•	87294				
2 5030B	8260D	1	10/23/2023	1318	ссо			88182				
Parameter		C/ Numb		alytica Method		Result	Q	LOQ	LOD	DL	Units	R
1,1,1-Trichloroethane		71-55	5-6	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	2
1,1,2-Trichloroethane		79-00)-5	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	:
Trichloroethene		79-01	1-6	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	
Trichlorofluoromethane		75-69	9-4	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	
Vinyl chloride		75-01	-4	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	:
Xylenes (total)		1330-20)-7	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	
Surrogate	Q %	Run 1 Recovery	Acceptance Limits		Rur % Rec		Acceptance Limits	9				
1,2-Dichloroethane-d4		111	81-118	HN	12	3	81-118					
Bromofluorobenzene		91	85-114	Н	10	2	85-114					
Toluene-d8	Ν	117	89-112	Н	10)7	89-112					
Dibromofluoromethane		113	80-119	н	11	4	80-119					

LOQ = Limit of Quantitation	B = Detected in the method blank	E=Quantitationofcompoundecadedthecalibrationrangededddddddddd	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.						I	Laboratory I	D: YI30001	-005		
Description: Z2-32_0923							Matri	x: Aqueou	s		
Date Sampled:09/29/2023 1025		Project N	ame: JBC	Air, LTM							
Date Received: 09/29/2023	F	Project Nu	mber:								
RunPrep Method13520C	Analytical Method 8270E (SIM)	Dilution 1		Date Analyst 3 1845 JCG	•		Batch 30 86383				
Parameter		C. Numb	AS A ber	nalytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86	6-5 82	70E (SIM)	0.10 l	J	1.0	0.10	0.028	ug/L	1
Surrogate		Run 1 Recovery	Acceptanc Limits	e							
Fluoranthene-d10		83	23-154								
2-Methylnaphthalene-d10		78	15-139								

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.			Laboratory ID: YI30001-006																													
De	escription: Z2-36_0923							Matrix	k: Aqueou	s																						
	Sampled:09/28/2023 1301		Project N	ama [.] I	BC Air, LTM			Wath																								
	•		•		DC AII, LIM																											
Date I	Received: 09/29/2023		Project Nur	nber:																												
Run 1	Prep Method 5030B	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2023 0529 DPH	Prep	Date	Batch 87040																								
Para	meter		C/ Numb	AS er	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run																				
Aceto	one		67-64	-1	8260D	10	U	20	10	5.0	ug/L	1																				
Benz	ene		71-43	-2	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1																				
Brom	odichloromethane		75-27	-4	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1																				
Brom	oform		75-25	-2	8260D	0.80 l	U	1.0	0.80	0.40	ug/L																					
Brom	omethane (Methyl bromide)		74-83	-9	8260D	0.80 l	U	2.0	0.80	0.40	ug/L																					
	tanone (MEK)		78-93	-3	8260D	4.0 U		10	4.0	2.0	ug/L																					
	on disulfide		75-15-0		75-15-0				U	1.0	0.80	0.40	ug/L																			
Carb	on tetrachloride		56-23	-5	8260D	0.80 0		1.0	0.80	0.40	ug/L																					
	robenzene		108-90		8260D	0.80		1.0	0.80	0.40	ug/L																					
	roethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L																					
	roform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L																					
	romethane (Methyl chloride)		74-87		8260D	1.0 1		2.0	1.0	0.50	ug/L																					
	phexane		110-82		8260D	0.80		1.0	0.80	0.40	ug/L																					
•	Dibromo-3-chloropropane (DBC	וסי	96-12		8260D	0.80 0		1.0	0.80	0.40	ug/L																					
,	omochloromethane	J F)	124-48		8260D	0.80 0		1.0	0.80	0.40	ug/L																					
	Dibromoethane (EDB)		106-93		8260D	0.80 0		1.0	0.80		ug/L																					
			95-50		8260D 8260D	0.80 0		1.0	0.80	0.40																						
-	Dichlorobenzene		95-50 541-73		8260D 8260D					0.40	ug/L																					
-	Dichlorobenzene		106-46		8260D 8260D	0.80		1.0	0.80	0.40	ug/L																					
-	Dichlorobenzene					0.80		1.0	0.80	0.40	ug/L																					
	orodifluoromethane		75-71		8260D	1.2 0		2.0	1.2	0.60	ug/L																					
-	Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.40	ug/L																					
,	Dichloroethane		107-06		8260D	0.80		1.0	0.80	0.40	ug/L																					
,	Dichloroethene																						75-35		8260D	0.80 0	U	1.0	0.80	0.40	ug/L	
	,2-Dichloroethene		156-59		8260D	1.5		1.0	0.80	0.40	ug/L																					
	-1,2-Dichloroethene		156-60			8260D 0.80 U		1.0	0.80	0.40	ug/L																					
	Dichloropropane		78-87		8260D	0.80 (1.0	0.80	0.40	ug/L																					
	,3-Dichloropropene		10061-01		8260D	0.80 (1.0	0.80	0.40	ug/L																					
	-1,3-Dichloropropene		10061-02		8260D	0.80 (1.0	0.80	0.40	ug/L																					
	benzene		100-41		8260D	0.80 (1.0	0.80	0.40	ug/L																					
	xanone		591-78	-	8260D	4.0 (10	4.0	2.0	ug/L																					
	opylbenzene		98-82		8260D	0.80 (1.0	0.80	0.40	ug/L																					
	yl acetate		79-20	-9	8260D	0.80 (1.0	0.80	0.40	ug/L																					
	yl tertiary butyl ether (MTBE)		1634-04		8260D	0.80 (1.0	0.80	0.40	ug/L	1																				
4-Me	thyl-2-pentanone		108-10	-1	8260D	4.0 l	U	10	4.0	2.0	ug/L	1																				
Meth	ylcyclohexane		108-87	-2	8260D	0.80 l	U	5.0	0.80	0.40	ug/L	1																				
Meth	ylene chloride		75-09	-2	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1																				
Naph	Ithalene		91-20	-3	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1																				
Styre	ne		100-42	-5	8260D	0.82 l	U	1.0	0.82	0.41	ug/L	1																				
1,1,2	,2-Tetrachloroethane		79-34	-5	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1																				
Tetra	chloroethene		127-18	-4	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1																				
Tolue	ene		108-88	-3	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1																				
1,1,2	-Trichloro-1,2,2-Trifluoroethan	e	76-13	6-1	8260D	0.84 l	U	1.0	0.84	0.42	ug/L																					
	-Trichlorobenzene		120-82	-1	8260D	0.80 l	U	1.0	0.80	0.40	ug/L																					
	-Trichloroethane		71-55		8260D	0.80 (1.0	0.80	0.40	ug/L																					
		Detected in the method blan			compound exceeded the		range	DL = Detection Lin			= Surroga																					
	detected at or above the LOD N = F	Recovery is out of criteria	P = The R	DIIbotw	een two GC columns exc	oodo 400/		J = Estimated resu	hac 00 is the		= LCS/LC	SI failu																				

	Volati	ie orga		mpounda	5 by 0	0/10	0				
Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-006		
Description: Z2-36_0923							Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1301		Project Na	ame: JBC	Air, LTM							
Date Received: 09/29/2023	I	Project Num	ber:								
RunPrep Method15030B	Analytical Method 8260D		•	Date Analys 23 0529 DPH	t Prep	Date	Batch 87040				
Parameter		CA Numbe	AS A	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Rur
1,1,2-Trichloroethane		79-00-	·5	8260D	0.80 (U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01-	-6	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69-	-4	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01-	4	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20-	-7	8260D	0.80 0	U	1.0	0.80	0.40	ug/L	1
Surrogate		Run 1 A Recovery	cceptanc Limits	e							
1,2-Dichloroethane-d4		108	81-118								
Bromofluorobenzene		89	85-114								
Toluene-d8		99	89-112								
Dibromofluoromethane		109	80-119								

		E = Quantitation of compound exceeded the calibration range		Q = Surrogate failure
U = Not detected at or above the LOD N = Red	ecovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time W = Re	eported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

		0		•	-		,				
Client: Arcadis U.S., Inc.						La	boratory	D: YI30001	-006		
Description: Z2-36_0923							Matr	ix: Aqueou	S		
Date Sampled:09/28/2023 1301		Project N	ame: JBC Ai	r, LTM							
Date Received: 09/29/2023	F	Project Nu	mber:								
RunPrep Method13520C	Analytical Method 8270E (SIM)	Dilution 1	Analysis D 10/12/2023	ate Analyst 1909 JCG	•	Date 023 1330	Batch 86383				
Parameter		C Numb	AS Ana ber M	lytical ethod	Result	Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86	6-5 8270)E (SIM)	0.099 L		0.99	0.099	0.028	ug/L	1
Surrogate		Run 1 Recovery	Acceptance Limits								
Fluoranthene-d10		103	23-154								
2-Methylnaphthalene-d10		83	15-139								

	LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
H - Out of holding time W - Reported on wet weight basis LOD - Limit of Detection S - MS/MSD	U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
	H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.						L	aboratory I	D: YI30001	-007		
Description: Z2-T3_0923							Matri	x: Aqueou	s		
Date Sampled:09/29/2023 1255		Proiect N	ame: JE	BC Air, LTM				•			
Date Received: 09/29/2023		, Project Nur									
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		sis Date Analyst 2023 0037 AMR2	Pre	p Date	Batch 87294				
2 5030B	8260D	1		2023 1351 CCO			88182				
2 30305	02000	I	10/23/2	023 1331 000			00102				
_		C/ Numb		Analytical		-					_
Parameter				Method	Result		LOQ	LOD	DL	Units	
Acetone		67-64		8260D		UQ	20	10	5.0	ug/L	1
Benzene		71-43 75-27		8260D	0.80		1.0	0.80	0.40	ug/L	1
Bromodichloromethane				8260D	0.80		1.0	0.80	0.40	ug/L	1
Bromoform		75-25		8260D	0.80		1.0	0.80	0.40	ug/L	1
Bromomethane (Methyl bromide)		74-83		8260D	0.80		2.0	0.80	0.40	ug/L	1
2-Butanone (MEK)		78-93		8260D		UQ	10	4.0	2.0	ug/L	1
Carbon disulfide		75-15		8260D	0.80		1.0	0.80	0.40	ug/L	1
Carbon tetrachloride		56-23		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chlorobenzene		108-90		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chloroethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L	1
Chloroform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chloromethane (Methyl chloride)		74-87		8260D		UQ	2.0	1.0	0.50	ug/L	1
Cyclohexane		110-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DE	SCP)	96-12		8260D	0.80		1.0	0.80	0.40	ug/L	1
Dibromochloromethane		124-48		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dibromoethane (EDB)		106-93		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dichlorobenzene		95-50		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,3-Dichlorobenzene		541-73		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,4-Dichlorobenzene		106-46		8260D	0.80		1.0	0.80	0.40	ug/L	1
Dichlorodifluoromethane		75-71		8260D		UQ	2.0	1.2	0.60	ug/L	1
1,1-Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dichloroethane		107-06	-2	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
1,1-Dichloroethene		75-35	-4	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
cis-1,2-Dichloroethene		156-59	-2	8260D		UQM-03	1.0	0.80	0.40	ug/L	1
trans-1,2-Dichloroethene		156-60	-5	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
1,2-Dichloropropane		78-87	' - 5	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-01	-5	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-02	-6	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Ethylbenzene		100-41	-4	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
2-Hexanone		591-78	-6	8260D	4.0	UQ	10	4.0	2.0	ug/L	1
Isopropylbenzene		98-82	2-8	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Methyl acetate		79-20	-9	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-04	-4	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
4-Methyl-2-pentanone		108-10	-1	8260D	4.0	UQ	10	4.0	2.0	ug/L	1
Methylcyclohexane		108-87	-2	8260D	0.80	UQ	5.0	0.80	0.40	ug/L	1
Methylene chloride		75-09	-2	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Naphthalene		91-20	-3	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Styrene		100-42	-5	8260D	0.82	UQ	1.0	0.82	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-34	-5	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Tetrachloroethene		127-18	-4	8260D	0.47	JQ	1.0	0.80	0.40	ug/L	1
Toluene		108-88		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroetha	ne	76-13		8260D	0.84		1.0	0.84	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
	Detected in the method blan			ompound exceeded the		-	= Detection Lin			= Surroga	
U = Not detected at or above the LOD N =	Recovery is out of criteria	P = The R	PD betwee	en two GC columns exc	eeds 40%	J =	Estimated resu	ult < LOQ and ;	≥DL L	= LCS/LCS	5D failu

	Client: Arcadis U.S., Inc.							La	boratory II	D: YI30001	-007		
Descr	iption: Z2-T3_0923								Matri	x: Aqueou	s		
Date Sa	mpled:09/29/2023 1255		Project N	lame: JBC A	ir, LTM	1							
Date Rec	eived: 09/29/2023		Project Nu	mber:									
Run Pr	ep Method	Analytical Method	Dilution	Analysis I	Date A	nalyst	Pre	o Date	Batch				
1	5030B	8260D	1	10/13/2023	0037 A	AMR2			87294				
2	5030B	8260D	1	10/23/2023	1351	ссо			88182				
Parame	ter		C Numb		alytica Method		Result	Q	LOQ	LOD	DL	Units	R
1,1,1-Tri	chloroethane		71-5	5-6	8260	D	0.80	UQ	1.0	0.80	0.40	ug/L	
1,1,2-Tri	chloroethane		79-00	0-5	8260	D	0.80	UQ	1.0	0.80	0.40	ug/L	
Trichlor	oethene		79-01	1-6	8260	D	0.60	JQ	1.0	0.80	0.40	ug/L	
Trichlord	ofluoromethane		75-69	9-4	8260	D	0.80	UQ	1.0	0.80	0.40	ug/L	
Vinyl chl	oride		75-0 <i>°</i>	1-4	8260	D	0.80	UQ	1.0	0.80	0.40	ug/L	
Xylenes	(total)		1330-20	0-7	8260	D	0.80	UQ	1.0	0.80	0.40	ug/L	
Surroga	te	Q %	Run 1 Recovery	Acceptance Limits		Rur % Rec		cceptance Limits	9				
1,2-Dich	loroethane-d4		110	81-118	HN	12	24	81-118					
Bromoflu	uorobenzene		90	85-114	Н	10)3	85-114					
Toluene	-d8	Ν	117	89-112	Н	11	0	89-112					
Dibromo	fluoromethane		113	80-119	н	11	5	80-119					

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.						L	aboratory I	D: YI30001	-007				
Description: Z2-T3 0923							Matrix: Aqueous						
Date Sampled:09/29/2023 1255		Project N	ame: J	BC Air, LTM									
Date Received: 09/29/2023		Project Nur											
			ibei.										
Run Prep Method	Analytical Method			sis Date Analyst	Pre	p Date	Batch						
1 5030B	8260D	1		2023 0037 AMR2			87294						
2 5030B	8260D	1	10/23/	2023 1351 CCO			88182						
Parameter		C/ Numb		Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run		
Acetone		67-64	-1	8260D	10	UHQ	20	10	5.0	ug/L	2		
Benzene		71-43	-2	8260D	0.80	UHQ	1.0	0.80	0.40	ug/L	2		
Bromodichloromethane		75-27	-4	8260D	0.80	UHQ	1.0	0.80	0.40	ug/L	2		
Bromoform		75-25	-2	8260D	0.80	UHQ	1.0	0.80	0.40	ug/L	2		
Bromomethane (Methyl bromide)		74-83	-9	8260D	0.80	UHQ	2.0	0.80	0.40	ug/L	2		
2-Butanone (MEK)		78-93	-3	8260D	4.0	UHQ	10	4.0	2.0	ug/L	2		
Carbon disulfide		75-15	-0	8260D	0.80	UHQ	1.0	0.80	0.40	ug/L	2		
Carbon tetrachloride		56-23	-5	8260D	0.80	UHQ	1.0	0.80	0.40	ug/L	2		
Chlorobenzene		108-90	-7	8260D	0.80	UHQ	1.0	0.80	0.40	ug/L	2		
Chloroethane		75-00	-3	8260D	0.80	UHQ	2.0	0.80	0.40	ug/L	2		
Chloroform		67-66	-3	8260D	0.44	HJQ	1.0	0.80	0.40	ug/L	2		
Chloromethane (Methyl chloride	e)	74-87		8260D	0.79	HJQM-03		1.0	0.50	ug/L	2		
Cyclohexane	,	110-82		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
1,2-Dibromo-3-chloropropane (DB	CP)	96-12		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
Dibromochloromethane	- /	124-48		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
1,2-Dibromoethane (EDB)		106-93		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
1,2-Dichlorobenzene		95-50		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
1,3-Dichlorobenzene		541-73		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
1,4-Dichlorobenzene		106-46		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
Dichlorodifluoromethane		75-71		8260D		UHQ	2.0	1.2	0.40	ug/L	2		
1,1-Dichloroethane		75-34		8260D		UHQ	1.0	0.80	0.80	ug/L	2		
1.2-Dichloroethane		107-06		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
1,1-Dichloroethene		75-35		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
cis-1,2-Dichloroethene		156-59		8260D		UHQ	1.0	0.80		ug/L	2		
trans-1,2-Dichloroethene		156-60		8260D 8260D		UHQ	1.0	0.80	0.40	-	2		
,						UHQ			0.40	ug/L			
1,2-Dichloropropane		78-87		8260D			1.0	0.80	0.40	ug/L	2		
cis-1,3-Dichloropropene		10061-01		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
trans-1,3-Dichloropropene		10061-02		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
Ethylbenzene		100-41		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
2-Hexanone		591-78		8260D		UHQ	10	4.0	2.0	ug/L	2		
Isopropylbenzene		98-82		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
Methyl acetate		79-20		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
Methyl tertiary butyl ether (MTBE)		1634-04		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
4-Methyl-2-pentanone		108-10		8260D		UHQ	10	4.0	2.0	ug/L	2		
Methylcyclohexane		108-87		8260D		UHQ	5.0	0.80	0.40	ug/L	2		
Methylene chloride		75-09		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
Naphthalene		91-20		8260D		UHQ	1.0	0.80	0.40	ug/L	2		
Styrene		100-42		8260D		UHQ	1.0	0.82	0.41	ug/L	2		
1,1,2,2-Tetrachloroethane		79-34	-5	8260D	0.80	UHQ	1.0	0.80	0.40	ug/L	2		
Tetrachloroethene		127-18	-4	8260D	0.50	HJQ	1.0	0.80	0.40	ug/L	2		
Toluene		108-88	-3	8260D	0.80	UHQ	1.0	0.80	0.40	ug/L	2		
1,1,2-Trichloro-1,2,2-Trifluoroetha	ne	76-13	-1	8260D	0.84	UHQ	1.0	0.84	0.42	ug/L	2		
1,2,4-Trichlorobenzene		120-82	-1	8260D	0.80	UHQ	1.0	0.80	0.40	ug/L	2		
	Detected in the second states			and a second	aalit a ti		Detarti	an it		0	ha /- "		
	Detected in the method blanl Recovery is out of criteria			compound exceeded the een two GC columns exc			 Detection Lir Estimated result 			= Surroga = LCS/LCS			
	Reported on wet weight bas				. / •	-				= MS/MSE			

Client: Arcadis U.S., Inc.							La	boratory II	D: YI30001	-007		
Description: Z2-T3_0923								Matri	x: Aqueou	S		
Date Sampled:09/29/2023 1255		Project N	ame: JBC A	ir, LTM	I							
Date Received: 09/29/2023		Project Nur	mber:									
Run Prep Method	Analytical Method	Dilution	Analysis I	Date A	nalyst	Pre	p Date	Batch				
1 5030B	8260D	1	10/13/2023	0037 A	AMR2			87294				
2 5030B	8260D	1	10/23/2023	3 1351	ссо			88182				
Parameter		C/ Numb		nalytica Method		Result	Q	LOQ	LOD	DL	Units	R
1,1,1-Trichloroethane		71-55	5-6	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	2
1,1,2-Trichloroethane		79-00)-5	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	
Trichloroethene		79-01	-6	8260	D	0.53	HJQ	1.0	0.80	0.40	ug/L	
Trichlorofluoromethane		75-69	9-4	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	
Vinyl chloride		75-01	-4	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	
Xylenes (total)		1330-20)-7	8260	D	0.80	UHQ	1.0	0.80	0.40	ug/L	
Surrogate	Q %	Run 1 Recovery	Acceptance Limits		Rur % Rec		Acceptance Limits)				
1,2-Dichloroethane-d4		110	81-118	HN	12	24	81-118					
Bromofluorobenzene		90	85-114	Н	10	3	85-114					
Toluene-d8	N	117	89-112	Н	11	0	89-112					
Dibromofluoromethane		113	80-119	н	11	5	80-119					

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	-007		
Description: Z2-T3_0923					Matri	ix: Aqueou	S		
Date Sampled:09/29/2023 1255	P	roject Name	e: JBC Air, LTM						
Date Received: 09/29/2023	Pro	ject Numbe	r:						
RunPrep Method13520C	Analytical Method Di 8270E (SIM)		nalysis Date Analys /12/2023 1933 JCG	t Prep Date 10/03/2023 13	Batch 30 86383				
Parameter		CAS Number	Analytical Method	Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86-5	8270E (SIM)	0.099 U	0.99	0.099	0.028	ug/L	1
Surrogate			eptance ₋imits						
Fluoranthene-d10	Ç	92 2	23-154						
2-Methylnaphthalene-d10	8	86 1	15-139						

	LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
H - Out of holding time W - Reported on wet weight basis LOD - Limit of Detection S - MS/MSD	U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
	H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	-008		
Description: Z2-138-01_0923					Matri	ix: Aqueou	s		
Date Sampled:09/29/2023 1200	F	Project Na	me: JBC Air, LTM						
Date Received: 09/29/2023	Pro	oject Numl	ber:						
RunPrep Method13520C	Analytical Method D 8270E (SIM)		Analysis Date Analys 10/13/2023 1450 JCG	t Prep Date 10/05/2023 11	Batch 34 86606				
Parameter		CA: Numbe	S Analytical r Method	Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86-5	5 8270E (SIM)	0.098 U	0.98	0.098	0.027	ug/L	1
Surrogate		un 1 Ao covery	cceptance Limits						
Fluoranthene-d10		108	23-154						
2-Methylnaphthalene-d10		90	15-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.	Volati	ie orga		ompounds	by C	0/10		VI20001	000		
,						Laboratory ID: YI30001-009					
Description: TB08_0923-C							Matrix	: Aqueou	S		
Date Sampled:09/28/2023 1301		Project N	ame: JB	C Air, LTM							
Date Received: 09/29/2023	F	Project Nur	nber:								
RunPrep Method15030B	Analytical Method 8260D	Dilution 1	•	sis Date Analyst 2023 0554 DPH	Prep	Date	Batch 87040				
Parameter		C/ Numb	AS er	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Acetone		67-64	-1	8260D	10	J	20	10	5.0	ug/L	1
Benzene		71-43	-2	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1
Bromodichloromethane		75-27	-4	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1
Bromoform		75-25	-2	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1
Bromomethane (Methyl bromide)		74-83	-9	8260D	0.80 l	U	2.0	0.80	0.40	ug/L	1
2-Butanone (MEK)		78-93	-3	8260D	4.0 l	U	10	4.0	2.0	ug/L	1
Carbon disulfide		75-15	-0	8260D	0.80 l	U	1.0	0.80	0.40	ug/L	1
Carbon tetrachloride		56-23	-5	8260D	0.80 0	U	1.0	0.80	0.40	ug/L	1
Chlorobenzene		108-90		8260D	0.80 0	U	1.0	0.80	0.40	ug/L	1
Chloroethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L	1
Chloroform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chloromethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.50	ug/L	1
Cyclohexane		110-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBC	P)	96-12		8260D	0.80	-	1.0	0.80	0.40	ug/L	1
Dibromochloromethane	•)	124-48		8260D	0.80 0		1.0	0.80	0.40	ug/L	1
1,2-Dibromoethane (EDB)		106-93		8260D	0.80 1		1.0	0.80	0.40	ug/L	1
1,2-Dichlorobenzene		95-50		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,3-Dichlorobenzene		541-73		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,4-Dichlorobenzene		106-46		8260D	0.80 0		1.0	0.80	0.40	ug/L	1
Dichlorodifluoromethane		75-71		8260D	1.2 \		2.0	1.2	0.40	ug/L	1
1,1-Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.00	ug/L	1
1,2-Dichloroethane		107-06		8260D	0.80 0		1.0	0.80	0.40	ug/L	1
1,1-Dichloroethene		75-35		8260D	0.80 0		1.0	0.80	0.40	ug/L	1
cis-1,2-Dichloroethene		156-59		8260D	0.80 0		1.0	0.80	0.40	ug/L	1
trans-1,2-Dichloroethene		156-60		8260D	0.80 0		1.0	0.80	0.40	ug/L	
1,2-Dichloropropane		78-87	-	8260D	0.80 0		1.0	0.80	0.40	ug/L	
cis-1,3-Dichloropropene		10061-01		8260D	0.80 0		1.0	0.80		ug/L	1
		10061-01							0.40		
trans-1,3-Dichloropropene		10061-02		8260D 8260D	0.80 0 0.80 0		1.0 1.0	0.80 0.80	0.40	ug/L	1
Ethylbenzene									0.40	ug/L	1
2-Hexanone Isopropylbenzene		591-78 98-82		8260D 8260D	4.0 U 0.80 U		10 1.0	4.0 0.80	2.0	ug/L	1 1
Methyl acetate		90-02 79-20		8260D	0.80 0		1.0	0.80	0.40	ug/L	
Methyl tertiary butyl ether (MTBE)		1634-04		8260D	0.80 0		1.0		0.40	ug/L	1
								0.80	0.40	ug/L	1
4-Methyl-2-pentanone		108-10 108-87		8260D	4.0 0		10	4.0	2.0	ug/L	1
Methylcyclohexane				8260D	0.80		5.0	0.80	0.40	ug/L	1
Methylene chloride		75-09		8260D	0.80		1.0	0.80	0.40	ug/L	1
Naphthalene		91-20		8260D	0.80		1.0	0.80	0.40	ug/L	1
Styrene		100-42		8260D	0.82		1.0	0.82	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-34		8260D	0.80		1.0	0.80	0.40	ug/L	1
Tetrachloroethene		127-18		8260D	0.80		1.0	0.80	0.40	ug/L	1
		108-88		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	9	76-13		8260D	0.84 0		1.0	0.84	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,1,1-Trichloroethane		71-55	-6	8260D	0.80 (U	1.0	0.80	0.40	ug/L	1
	etected in the method blank			ompound exceeded the		range	DL = Detection Lim			= Surroga	
	ecovery is out of criteria			en two GC columns exc	eeds 40%		J = Estimated resul	t < LOQ and		= LCS/LCS	
H = Out of holding time W = R	eported on wet weight basi	is LOD = Lin	nit of Detec	tion					S	= MS/MSE	J failure

	Volati	ie orga		mpound	s by C		0				
Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-009		
Description: TB08_0923-C							Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1301		Project Na	ame: JBC .	Air, LTM							
Date Received: 09/29/2023	I	Project Num	nber:								
RunPrep Method15030B	Analytical Method 8260D		•	Date Analys 3 0554 DPH	t Prep	o Date	Batch 87040				
Parameter		CA Numbe		nalytical Method	Result	Q	LOQ	LOD	DL	Units	Ru
1,1,2-Trichloroethane		79-00-	-5	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01-	-6	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69-	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01-	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20-	-7	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Surrogate		Run 1 A Recovery	cceptanc Limits	e							
1,2-Dichloroethane-d4		105	81-118								
Bromofluorobenzene		89	85-114								
Toluene-d8		95	89-112								
Dibromofluoromethane		107	80-119								
Distontonuorontethane		101	50-113								

U = Not detected at or above the LOD N = Recovery is of				
0 = Not detected at of above the LOD $N = Recovery is detected at of above the LOD$	ut of criteria P = The RPD bety	ween two GC columns exceeds 40% J = Estim	nated result < LOQ and \geq DL L = LCS/LCSI	J failure
H = Out of holding time W = Reported on	wet weight basis LOD = Limit of De	etection	S = MS/MSD	failure

Client: Arcadis U.S., Inc.				Compounds			Laboratory ID	D: YI30001	-010				
Description: Z2-11_0923							Matrix: Aqueous						
Date Sampled:09/28/2023 1655		Project N		JBC Air, LTM			Math	. Aqueou	15				
·													
Date Received: 09/29/2023	ł	Project Nur	nber:										
RunPrep MethodAnal15030B	ytical Method 8260D	Dilution 1		ysis Date Analyst /2023 0619 DPH	Prep	o Date	Batch 87040						
Parameter		C/ Numb	AS er	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run		
Acetone		67-64	-1	8260D	10	UQ	20	10	5.0	ug/L	1		
Benzene		71-43	-2	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Bromodichloromethane		75-27	-4	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Bromoform		75-25	-2	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Bromomethane (Methyl bromide)		74-83	-9	8260D	0.80	UQ	2.0	0.80	0.40	ug/L	1		
2-Butanone (MEK)		78-93	-3	8260D	4.0	UQ	10	4.0	2.0	ug/L	1		
Carbon disulfide		75-15	-0	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Carbon tetrachloride		56-23	-5	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Chlorobenzene		108-90		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Chloroethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L	1		
Chloroform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Chloromethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.50	ug/L	1		
Cyclohexane		110-82		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,2-Dibromo-3-chloropropane (DBCP)		96-12		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Dibromochloromethane		124-48		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,2-Dibromoethane (EDB)		106-93		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,2-Dichlorobenzene		95-50		8260D	0.80		1.0	0.80		ug/L	1		
1,3-Dichlorobenzene		541-73		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,4-Dichlorobenzene		106-46		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Dichlorodifluoromethane		75-71		8260D	1.2		2.0	1.2	0.40				
									0.60	ug/L	1		
1,1-Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,2-Dichloroethane		107-06		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,1-Dichloroethene		75-35		8260D	0.80		1.0	0.80	0.40	ug/L	1		
cis-1,2-Dichloroethene		156-59		8260D	0.79		1.0	0.80	0.40	ug/L	1		
trans-1,2-Dichloroethene		156-60	-	8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,2-Dichloropropane		78-87		8260D	0.80		1.0	0.80	0.40	ug/L			
cis-1,3-Dichloropropene		10061-01		8260D	0.80		1.0	0.80	0.40	ug/L	1		
trans-1,3-Dichloropropene		10061-02		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Ethylbenzene		100-41	-4	8260D	0.80		1.0	0.80	0.40	ug/L	1		
2-Hexanone		591-78		8260D	4.0		10	4.0	2.0	ug/L	1		
Isopropylbenzene		98-82		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Methyl acetate		79-20		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Methyl tertiary butyl ether (MTBE)		1634-04		8260D	0.80		1.0	0.80	0.40	ug/L	1		
4-Methyl-2-pentanone		108-10	-1	8260D	4.0	UQ	10	4.0	2.0	ug/L	1		
Methylcyclohexane		108-87	-2	8260D	0.80	UQ	5.0	0.80	0.40	ug/L	1		
Methylene chloride		75-09	-2	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Naphthalene		91-20	-3	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Styrene		100-42	-5	8260D	0.82	UQ	1.0	0.82	0.41	ug/L	1		
1,1,2,2-Tetrachloroethane		79-34	-5	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Tetrachloroethene		127-18	-4	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Toluene		108-88	-3	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-13		8260D	0.84	UQ	1.0	0.84	0.42	ug/L	1		
1,2,4-Trichlorobenzene		120-82	-1	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
1,1,1-Trichloroethane		71-55		8260D	0.80		1.0	0.80	0.40	ug/L	1		
	in the method blank			f compound exceeded the		range	DL = Detection Lim			= Surroga			
	y is out of criteria			veen two GC columns exc	eeds 40%		J = Estimated resul	t < LOQ and		= LCS/LCS			
H = Out of holding time W = Reporte	d on wet weight basi	is LOD = Lin	nit of De	tection					S	= MS/MS	J failure		

Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-010		
Description: Z2-11_0923							Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1655		Project Na	ame: JBC A	ir, LTM							
Date Received: 09/29/2023	I	Project Num	nber:								
RunPrep Method15030B	Analytical Method 8260D			Date Analyst 0619 DPH	t Prej	o Date	Batch 87040				
Parameter		CA Numbe		alytical Nethod	Result	Q	LOQ	LOD	DL	Units	Rur
1,1,2-Trichloroethane		79-00-	-5	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01-	-6	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69-	-4	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01-	-4	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20-	-7	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1
Surrogate		Run 1 A Recovery	Acceptance Limits								
1,2-Dichloroethane-d4	Ν	119	81-118								
Bromofluorobenzene		91	85-114								
Toluene-d8		101	89-112								
Dibromofluoromethane		119	80-119								

U = Not detected at or above the LOD N = Recovery is of				
0 = Not detected at of above the LOD $N = Recovery is detected at of above the LOD$	ut of criteria P = The RPD bety	ween two GC columns exceeds 40% J = Estim	nated result < LOQ and \geq DL L = LCS/LCSI	J failure
H = Out of holding time W = Reported on	wet weight basis LOD = Limit of De	etection	S = MS/MSD	failure

Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	-010		
Description: Z2-11_0923					Matr	ix: Aqueou	S		
Date Sampled:09/28/2023 1655		Project Na	ame: JBC Air, LTM						
Date Received: 09/29/2023	Р	roject Num	nber:						
RunPrep Method13520C	Analytical Method 8270E (SIM)		Analysis Date Analys 10/13/2023 1514 JCG	t Prep Date 10/05/2023 11	Batch 34 86606				
Parameter		CA Numbe	S Analytical er Method	Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86-	-5 8270E (SIM)	0.098 US	0.98	0.098	0.027	ug/L	1
Surrogate		Run 1 A ecovery	Acceptance Limits						
Fluoranthene-d10		95	23-154						
2-Methylnaphthalene-d10		81	15-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E=Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.			•			Laboratory II		-011				
						Matrix: Aqueous						
Description: Z2-45_0923	D () ()					Matri	Aqueou	S				
Date Sampled:09/28/2023 1310	•		BC Air, LTM									
Date Received: 09/29/2023	Project Nu	mber:										
RunPrep MethodAnalyti15030B	cal Method Dilution 8260D 1		ysis Date Analyst /2023 0644 DPH	Prep	Date	Batch 87040						
Parameter	C Num	AS ber	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run		
Acetone	67-6	4-1	8260D	10	UQ	20	10	5.0	ug/L	1		
Benzene	71-4	3-2	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Bromodichloromethane	75-2	7-4	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Bromoform	75-2	5-2	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Bromomethane (Methyl bromide)	74-8	3-9	8260D	0.80	UQ	2.0	0.80	0.40	ug/L	1		
2-Butanone (MEK)	78-9	3-3	8260D	4.0	UQ	10	4.0	2.0	ug/L	1		
Carbon disulfide	75-1	5-0	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Carbon tetrachloride	56-2	3-5	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Chlorobenzene	108-9	0-7	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Chloroethane	75-0	0-3	8260D	0.80		2.0	0.80	0.40	ug/L	1		
Chloroform	67-6	6-3	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
Chloromethane (Methyl chloride)	74-8		8260D	1.0		2.0	1.0	0.50	ug/L	1		
Cyclohexane	110-8		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,2-Dibromo-3-chloropropane (DBCP)	96-1		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Dibromochloromethane	124-4		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,2-Dibromoethane (EDB)	106-9		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,2-Dichlorobenzene	95-5		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,3-Dichlorobenzene	541-7		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,4-Dichlorobenzene	106-4		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Dichlorodifluoromethane	75-7		8260D	1.2		2.0	1.2	0.40	ug/L	1		
1,1-Dichloroethane	75-3		8260D	0.80		1.0	0.80		ug/L	1		
1,2-Dichloroethane	107-0		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,1-Dichloroethene	75-3		8260D	0.80		1.0	0.80	0.40 0.40	ug/L	1		
cis-1,2-Dichloroethene	156-5		8260D	0.80		1.0	0.80	0.40	ug/L	1		
trans-1,2-Dichloroethene	156-6		8260D	0.81		1.0 1.0	0.80		ug/L	1		
	78-8		8260D	0.80		1.0	0.80	0.40	-			
1,2-Dichloropropane		-						0.40	ug/L	1		
cis-1,3-Dichloropropene	10061-0		8260D	0.80 0.80		1.0	0.80	0.40	ug/L	1		
trans-1,3-Dichloropropene	10061-0		8260D			1.0	0.80	0.40	ug/L	1		
Ethylbenzene	100-4		8260D	0.80		1.0	0.80	0.40	ug/L	1		
2-Hexanone	591-7		8260D	4.0		10	4.0	2.0	ug/L	1		
Isopropylbenzene	98-8		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Methyl acetate	79-2		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Methyl tertiary butyl ether (MTBE)	1634-0		8260D	0.80		1.0	0.80	0.40	ug/L	1		
4-Methyl-2-pentanone	108-1		8260D	4.0		10	4.0	2.0	ug/L	1		
Methylcyclohexane	108-8		8260D	0.80		5.0	0.80	0.40	ug/L	1		
Methylene chloride	75-0		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Naphthalene	91-2		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Styrene	100-4		8260D	0.82		1.0	0.82	0.41	ug/L	1		
1,1,2,2-Tetrachloroethane	79-3		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Tetrachloroethene	127-1		8260D	0.80		1.0	0.80	0.40	ug/L	1		
Toluene	108-8		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-1		8260D	0.84		1.0	0.84	0.42	ug/L	1		
1,2,4-Trichlorobenzene	120-8		8260D	0.80		1.0	0.80	0.40	ug/L	1		
1,1,1-Trichloroethane	71-5	5-6	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1		
			compound exceeded the		•	DL = Detection Lin			= Surroga			
U = Not detected at or above the LOD N = Recovery is H = Out of holding time W = Reported or	n wet weight basis LOD = L		een two GC columns exce ection	eeus 40%		J = Estimated resu			= LCS/LCS = MS/MSE			

			, , , , , , , , , , , , , , , , , , ,					
				Laboratory I	D: YI30001	-011		
				Matri	x: Aqueou	S		
	Project Nar	ne: JBC Air, LTM						
	Project Numb	per:						
Analytical Method 8260D		•	Prep Date	Batch 87040				
	CAS Number		Result Q	LOQ	LOD	DL	Units	Ru
	79-00-5	5 8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
	79-01-6	6 8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
	75-69-4	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
	75-01-4	8260D	26 Q	1.0	0.80	0.40	ug/L	1
	1330-20-7	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Q %		cceptance Limits						
N	120	81-118						
	95	85-114						
	103	89-112						
	119	80-119						
	Analytical Method 8260D	Project Nar Project Number Analytical Method Dilution Analytical 8260D 1 1 CAS Number 79-00-5 79-01-6 75-69-4 75-69-4 1330-20-7 1330-20-7 Q % Recovery Action 100 95 103	CAS Analytical Method Dilution Analysis Date Analyst 8260D 1 10/11/2023 0644 DPH 8260D 1 10/11/2023 0644 DPH Value 79-00-5 8260D 79-00-5 8260D 79-01-6 8260D 75-69-4 8260D 75-01-4 8260D 1330-20-7 8260D 95 85-114 95 85-114 103 89-112	Project Name: JBC Air, LTM Project Number: Analytical Method Dilution Analysis Date Analyst Prep Date 8260D 1 10/11/2023 0644 DPH Prep Date CAS Analytical Method Result Q 79-00-5 8260D 0.80 UQ 79-01-6 8260D 0.80 UQ 75-69-4 8260D 0.80 UQ 75-69-4 8260D 0.80 UQ 75-69-4 8260D 0.80 UQ 75-69-4 8260D 0.80 UQ 1330-20-7 8260D 0.80 UQ 1330-20-7 8260D 0.80 UQ N 120 81-118 5 5 95 85-114 103 89-112 5	Matri Project Number: Analytical Method Dilution Analysis Date Analyst Prep Date Batch 8260D Dilution Analysis Date Analyst Prep Date Batch 8260D 1 Analysis Date Analyst Prep Date Batch 8260D 1 Analytical Method Result Q LOQ T9:00-5 8260D 0.80 UQ 1.0 T9:00-5 8260D 0.80 UQ 1.0 T9:01-6 8260D 0.80 UQ 1.0 T5:01-4 8260D 0.80 UQ 1.0 T5:01-4 8260D 0.80 UQ 1.0 T330-20-7 8260D 0.80 UQ 1.0 T330-20-7 8260D 0.80 UQ 1.0 N 120 81-118 95 85-114 95 85-114 95 85-114 95 85-114 95 85-114 103 89-112 V V	Analytical Method Dilution Analysis Date Analyst Prep Date Batch 8260D 1 10/11/2023 0644 DPH Prep Date Batch Kondytical Method Dilution Analysis Date Analyst Prep Date Batch 8260D 1 10/11/2023 0644 DPH Prep Date Batch Kondytical Mumber Method Result Q LOQ LOD 79:00-5 8260D 0.80 UQ 1.0 0.80 79:01-6 8260D 0.80 UQ 1.0 0.80 79:01-6 8260D 0.80 UQ 1.0 0.80 79:01-7 8260D 0.80 UQ 1.0 0.80 79:01-8 8260D 0.80 UQ 1.0 0.80 79:01-8 8260D 0.80 UQ 1.0 0.80 79:01-8 8260D 0.80 UQ 1.0 0.80 75:01-4 8260D 0.80 UQ 1.0 0.80 1330-20-7 8260D 0.80 UQ 1.0 0.80	CA Analytical Method Dilution Analysis Date Analyst 10/11/2023 0644 Prep Date 87040 Batch 87040 Batch 87040 Dilution Analysis Date Analyst 10/11/2023 0644 Prep Date 0.80 Date 87040 Date 87040 Date 0.80 Date 87040 Date	CAS Analysis Date Analyst Prep Date Batch Batch Visional Units Analytical Method Dilution Analysis Date Analyst Prep Date Batch 87040 Units Analytical Method Dilution Analysis Date Analyst Prep Date Batch Batch Units 82600 1 10/11/2023 0644 DPH Prep Date Batch 87040 Units Project Number Analytical Method Result Q LOQ LOD DL Units 79:00-5 8260D 0.80 UQ 1.0 0.80 0.40 ug/L 79:01-6 8260D 0.80 UQ 1.0 0.80 0.40 ug/L 79:01-7 8260D 0.80 UQ 1.0 0.80 0.40 ug/L 79:01-6 8260D 0.80 UQ 1.0 0.80 0.40 ug/L 75:69-4 8260D 0.80 UQ 1.0 0.80 0.40 ug/L 1330-20-7 8260D 0.80 UQ 1.0 0.80 0.40 ug/L N 120 81-11

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-011		
Description: Z2-45_0923							Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1310		Project N	ame: JBC Ai	r, LTM							
Date Received: 09/29/2023	Pr	oject Nur	nber:								
RunPrep Method13520C	Analytical Method I 8270E (SIM)	Dilution 1	Analysis D 10/13/2023	ate Analyst 1627 JCG		Date 2023 1	Batch 134 86606				
Parameter		C/ Numb		alytical lethod	Result	Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86	6-5 8270	DE (SIM)	0.097	US	0.97	0.097	0.027	ug/L	1
Surrogate		un 1 ecovery	Acceptance Limits								
Fluoranthene-d10		93	23-154								
2-Methylnaphthalene-d10		75	15-139								

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

	Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-012				
De	escription: Z2-45_0923-a							Matrix: Aqueous						
	Sampled:09/28/2023 1310		Proiect N	ame: J	BC Air, LTM									
	Received: 09/29/2023		Project Nu											
Run 1	Prep Method 5030B	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2023 0709 DPH	Prej	o Date	Batch 87040						
Para	imeter		C. Numb	AS per	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Rur		
Acet	one		67-64	1-1	8260D	10	U	20	10	5.0	ug/L	1		
Benz	ene		71-43	3-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1		
Brom	nodichloromethane		75-27	7-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1		
Brom	noform		75-25	5-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1		
Brom	nomethane (Methyl bromide)		74-83	3-9	8260D	0.80	U	2.0	0.80	0.40	ug/L			
2-Bu	tanone (MEK)		78-93	3-3	8260D	4.0	U	10	4.0	2.0	ug/L			
Carb	on disulfide		75-15			0.80	U	1.0	0.80	0.40	ug/L			
Carb	on tetrachloride		56-23	3-5	8260D	0.80	U	1.0	0.80	0.40	ug/L			
	robenzene		108-90		8260D	0.80 U 0.80 U		1.0	0.80	0.40	ug/L			
Chlo	roethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L			
	roform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L			
	romethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.50	ug/L			
	phexane		110-82		8260D	0.80		1.0	0.80	0.40	ug/L			
-	Dibromo-3-chloropropane (DB	CP)	96-12		8260D	0.80		1.0	0.80	0.40	ug/L			
,	omochloromethane		124-48		8260D	0.80		1.0	0.80	0.40	ug/L			
	Dibromoethane (EDB)		106-93		8260D	0.80		1.0	0.80	0.40	ug/L			
	Dichlorobenzene		95-50		8260D	0.80		1.0	0.80	0.40	ug/L			
,	Dichlorobenzene		541-73		8260D	0.80		1.0	0.80	0.40	ug/L			
,	Dichlorobenzene		106-46		8260D	0.80		1.0	0.80	0.40	ug/L			
-	lorodifluoromethane		75-71		8260D	1.2		2.0	1.2	0.40	ug/L			
	Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.00	ug/L			
,	Dichloroethane		107-06		8260D	0.80		1.0	0.80	0.40	ug/L			
,	Dichloroethene		75-35		8260D	0.80		1.0	0.80	0.40	ug/L			
-	,2-Dichloroethene		156-59		8260D	0.80		1.0	0.80	0.40	ug/L			
	s-1,2-Dichloroethene		156-60		8260D	0.83		1.0	0.80	0.40 0.40	ug/L			
	Dichloropropane		78-87		8260D	0.80		1.0	0.80	0.40	ug/L			
	,3-Dichloropropene		10061-01		8260D	0.80		1.0	0.80		ug/L			
			10061-02		8260D	0.80				0.40	-			
	-1,3-Dichloropropene				8260D 8260D	0.80		1.0	0.80	0.40	ug/L			
	lbenzene		100-41					1.0	0.80	0.40	ug/L			
	xanone opylbenzene		591-78 98-82		8260D 8260D	4.0 0.80		10 1.0	4.0 0.80	2.0	ug/L ug/L			
•	lyl acetate		79-20		8260D	0.80		1.0	0.80	0.40				
	yl tertiary butyl ether (MTBE)		1634-04		8260D	0.80		1.0	0.80	0.40	ug/L			
	ethyl-2-pentanone		1034-04		8260D	4.0		1.0		0.40	ug/L			
	, ,								4.0	2.0	ug/L			
	ylcyclohexane ylene chloride		108-87 75-09		8260D 8260D	0.80 0.80		5.0 1.0	0.80 0.80	0.40	ug/L			
								1.0		0.40	ug/L			
•	nthalene		91-20		8260D	0.80		1.0	0.80	0.40	ug/L			
Styre			100-42		8260D	0.82		1.0	0.82	0.41	ug/L			
	2,2-Tetrachloroethane		79-34		8260D	0.80		1.0	0.80	0.40	ug/L			
	achloroethene		127-18		8260D	0.80		1.0	0.80	0.40	ug/L			
Tolue			108-88		8260D	0.80		1.0	0.80	0.40	ug/L			
	-Trichloro-1,2,2-Trifluoroethar	ne	76-13		8260D	0.84		1.0	0.84	0.42	ug/L			
	-Trichlorobenzene		120-82		8260D	0.80		1.0	0.80	0.40	ug/L			
1,1,1	-Trichloroethane		71-55	р-б	8260D	0.80	U	1.0	0.80	0.40	ug/L	1		
		Detected in the method blank Recovery is out of criteria			compound exceeded the een two GC columns exc		•	DL = Detection Lim J = Estimated resu			= Surroga = LCS/LCS			
		Reported on wet weight bas									= MS/MS			

		•		-	-					
Client: Arcadis U.S., Inc.						Laboratory I	D: YI30001	-012		
Description: Z2-45_0923-a						Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1310		Project Na	ame: JBC	CAir, LTM						
Date Received: 09/29/2023		Project Nun	nber:							
RunPrep Method15030B	Analytical Methor 8260D		-	s Date Analys 23 0709 DPH	t Prep Date	Batch 87040				
Parameter		CA Numbe	AS er	Analytical Method	Result Q	LOQ	LOD	DL	Units	Run
1,1,2-Trichloroethane		79-00	-5	8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01	-6	8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69	-4	8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01	-4	8260D	25	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20	-7	8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Surrogate	Q %	Run 1 A Recovery	Acceptan Limits							
1,2-Dichloroethane-d4		118	81-118	}						
Bromofluorobenzene		93	85-114	Ļ						
Toluene-d8		103	89-112	2						
Dibromofluoromethane		119	80-119)						

U = Not detected at or above the LOD N = Recovery is of				
0 = Not detected at of above the LOD $N = Recovery is detected at of above the LOD$	ut of criteria P = The RPD bety	ween two GC columns exceeds 40% J = Estim	nated result < LOQ and \geq DL L = LCS/LCSI	J failure
H = Out of holding time W = Reported on	wet weight basis LOD = Limit of De	etection	S = MS/MSD	failure

	Client: Arcadis U.S., Inc.							Laboratory ID): YI30001	-013		
De	escription: Z2-50_0923							Matrix	: Aqueou	s		
Date	Sampled:09/28/2023 1515		Project N	ame: .	JBC Air, LTM							
Date	Received: 09/29/2023		Project Nu	nber:								
Run 1	Prep Method 5030B	Analytical Method 8260D	Dilution		ysis Date Analyst /2023 2244 CCO	Prep	o Date	Batch 87138				
Para	ameter		C. Numb	AS	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Ru
Acet			67-64	I-1	8260D	10		20	10	5.0	ug/L	
Benz			71-43		8260D	0.80		1.0	0.80	0.40	ug/L	
Brom	nodichloromethane		75-27	7-4	8260D	0.80		1.0	0.80	0.40	ug/L	
Brom	noform		75-25		8260D	0.80		1.0	0.80	0.40	ug/L	
	nomethane (Methyl bromide)		74-83		8260D	0.80		2.0	0.80	0.40	ug/L	
	tanone (MEK)		78-93		8260D	4.0		10	4.0	2.0	ug/L	
	on disulfide		75-15		8260D	0.80		1.0	0.80	0.40	ug/L	
	oon tetrachloride		56-23		8260D	0.80		1.0	0.80	0.40	ug/L	
	robenzene		108-90		8260D	0.80	-	1.0	0.80	0.40	ug/L	
	roethane		75-00		8260D	0.80	-	2.0	0.80	0.40	ug/L	
	roform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L	
	romethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.40	ug/L	
	ohexane		110-82		8260D	0.80		1.0	0.80	0.30	ug/L	
•	Dibromo-3-chloropropane (DBC	וסי	96-12		8260D	0.80		1.0	0.80	0.40	ug/L	
,	omochloromethane	J F)	124-48		8260D	0.80		1.0	0.80	0.40	ug/L	
	Dibromoethane (EDB)		106-93		8260D	0.80		1.0	0.80		ug/L	
	Dichlorobenzene		95-50		8260D	0.80		1.0	0.80	0.40		
,					8260D 8260D	0.80				0.40	ug/L	
-	Dichlorobenzene		541-73 106-46		8260D 8260D			1.0	0.80	0.40	ug/L	
-						0.80		1.0	0.80	0.40	ug/L	
			75-71		8260D	1.2		2.0	1.2	0.60	ug/L	
-	Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.40	ug/L	
,	Dichloroethane		107-06		8260D	0.80		1.0	0.80	0.40	ug/L	
,	Dichloroethene		75-35		8260D	0.80		1.0	0.80	0.40	ug/L	
	I,2-Dichloroethene		156-59		8260D	0.64		1.0	0.80	0.40	ug/L	
	s-1,2-Dichloroethene		156-60		8260D	0.80		1.0	0.80	0.40	ug/L	
	Dichloropropane		78-87		8260D	0.80		1.0	0.80	0.40	ug/L	
	,3-Dichloropropene		10061-01		8260D	0.80		1.0	0.80	0.40	ug/L	
	s-1,3-Dichloropropene		10061-02		8260D	0.80		1.0	0.80	0.40	ug/L	
	lbenzene		100-41		8260D	0.80		1.0	0.80	0.40	ug/L	
	exanone		591-78		8260D	4.0		10	4.0	2.0	ug/L	
	ropylbenzene		98-82		8260D	0.80		1.0	0.80	0.40	ug/L	
	nyl acetate		79-20		8260D	0.80		1.0	0.80	0.40	ug/L	
	yl tertiary butyl ether (MTBE)		1634-04		8260D	0.80		1.0	0.80	0.40	ug/L	
4-Me	ethyl-2-pentanone		108-10)-1	8260D	4.0		10	4.0	2.0	ug/L	
Meth	nylcyclohexane		108-87	'-2	8260D	0.80	U	5.0	0.80	0.40	ug/L	1
Meth	iylene chloride		75-09	9-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Napł	nthalene		91-20)-3	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Styre	ene		100-42	2-5	8260D	0.82	U	1.0	0.82	0.41	ug/L	1
1,1,2	2,2-Tetrachloroethane		79-34	I- 5	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Tetra	achloroethene		127-18	8-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Tolue	ene		108-88	8-3	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
1,1,2	2-Trichloro-1,2,2-Trifluoroethan	e	76-13	3-1	8260D	0.84	U	1.0	0.84	0.42	ug/L	1
1,2,4	I-Trichlorobenzene		120-82	2-1	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
1,1,1	-Trichloroethane		71-58	5-6	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
		Detected in the method blan			f compound exceeded the		•	DL = Detection Lim			= Surroga	
II - Not	detected at or above the LOD N = F	Recovery is out of criteria	P = The F	RPD betv	veen two GC columns exc	eeds 40%		J = Estimated result	t < LOQ and	>DL L	= LCS/LC	SD failu

Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-013		
Description: Z2-50_0923							Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1515		Project Na	ame: JBC Air	, LTM							
Date Received: 09/29/2023	I	Project Num	nber:								
RunPrep Method15030B	Analytical Method 8260D		Analysis Da 10/11/2023 2		t Prep	o Date	Batch 87138				
Parameter		CA Numbe		lytical ethod	Result	Q	LOQ	LOD	DL	Units	Rur
1,1,2-Trichloroethane		79-00-	-5	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01-	-6	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69-	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01-	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20-	-7	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Surrogate	Q %I	Run 1 A Recovery	cceptance Limits								
1,2-Dichloroethane-d4		116	81-118								
Bromofluorobenzene		103	85-114								
Toluene-d8		105	89-112								
Dibromofluoromethane		105	80-119								

	LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
H = Out of holding time W = Reported on wet weight basis LOD = Limit of Detection S = MS/MSD	U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
	H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

							040		
Client: Arcadis U.S., Inc.					Laboratory I	D: 130001	-013		
Description: Z2-50_0923					Matri	ix: Aqueou	s		
Date Sampled:09/28/2023 1515	Pi	roject Nam	e: JBC Air, LTM						
Date Received: 09/29/2023	Proj	ject Numbe	er:						
Run Prep Method			nalysis Date Analys	t Prep Date	Batch				
1 3520C	8270E (SIM)	1 10)/13/2023 1740 JCG	10/05/2023 11	34 86606				
Parameter		CAS Number	Analytical Method	Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86-5	8270E (SIM)	0.097 U	0.97	0.097	0.027	ug/L	1
Surrogate	Ru Q%Rec		ceptance Limits						
Fluoranthene-d10	ç	92	23-154						
2-Methylnaphthalene-d10	7	74	15-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.		Laboratory ID: YI30001-014									
Description: Z2-52R 0923						Matr	ix: Aqueou	s			
Date Sampled:09/28/2023 1600	Project N	ame: JBC	Air. LTM								
Date Received: 09/29/2023		Project Number:									
	•										
RunPrep MethodAnalyt15030B	ical Method Dilution 8260D 1	-	Date Analyst 3 0456 CCO	Pre	p Date	Batch 87138					
Parameter	C/ Numb		nalytical Method	Result	Q	LOQ	LOD	DL	Units	Ru	
Acetone	67-64	l-1	8260D	10	UQ	20	10	5.0	ug/L	1	
Benzene	71-43	3-2	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1	
Bromodichloromethane	75-27	/-4	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1	
Bromoform	75-25	5-2	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1	
Bromomethane (Methyl bromide)	74-83	3-9	8260D	0.80	UQ	2.0	0.80	0.40	ug/L	1	
2-Butanone (MEK)	78-93	3-3	8260D	4.0	UQ	10	4.0	2.0	ug/L	1	
Carbon disulfide	75-15	5-0	8260D	0.80	UQ	1.0	0.80	0.40	ug/L		
Carbon tetrachloride	56-23	8-5	8260D	0.80	UQ	1.0	0.80	0.40	ug/L		
Chlorobenzene	108-90		8260D	0.80	UQ	1.0	0.80	0.40	ug/L		
Chloroethane	75-00)-3	8260D	0.80	UQ	2.0	0.80	0.40	ug/L		
Chloroform	67-66		8260D	0.80		1.0	0.80	0.40	ug/L		
Chloromethane (Methyl chloride)	74-87		8260D	1.0		2.0	1.0	0.50	ug/L		
Cyclohexane	110-82		8260D	0.80		1.0	0.80	0.40	ug/L		
1,2-Dibromo-3-chloropropane (DBCP)	96-12		8260D	0.80		1.0	0.80	0.40	ug/L		
Dibromochloromethane	124-48		8260D	0.80		1.0	0.80	0.40	ug/L		
1,2-Dibromoethane (EDB)	106-93		8260D	0.80		1.0	0.80	0.40	ug/L		
1,2-Dichlorobenzene	95-50		8260D	0.80		1.0	0.80	0.40	ug/L		
1,3-Dichlorobenzene	541-73		8260D	0.80		1.0	0.80	0.40	ug/L		
1,4-Dichlorobenzene	106-46		8260D	0.80		1.0	0.80		ug/L		
Dichlorodifluoromethane	75-71		8260D	1.2		2.0	1.2	0.40	ug/L		
1,1-Dichloroethane	75-34		8260D	0.80		2.0 1.0	0.80	0.60	ug/L		
1,2-Dichloroethane	107-06		8260D 8260D	0.80		1.0	0.80	0.40	ug/L		
1,1-Dichloroethene	75-35		8260D 8260D	0.80		1.0	0.80	0.40	ug/L		
cis-1,2-Dichloroethene	156-59		8260D	0.80		1.0	0.80	0.40	ug/L		
trans-1,2-Dichloroethene	156-60		8260D 8260D	0.80		1.0	0.80	0.40	-		
								0.40	ug/L		
1,2-Dichloropropane	78-87		8260D	0.80		1.0	0.80	0.40	ug/L		
cis-1,3-Dichloropropene	10061-01		8260D	0.80		1.0	0.80	0.40	ug/L		
trans-1,3-Dichloropropene	10061-02		8260D	0.80		1.0	0.80	0.40	ug/L		
Ethylbenzene	100-41		8260D	0.80		1.0	0.80	0.40	ug/L		
2-Hexanone	591-78		8260D		UQ	10	4.0	2.0	ug/L		
Isopropylbenzene	98-82		8260D	0.80		1.0	0.80	0.40	ug/L		
Methyl acetate	79-20		8260D	0.80		1.0	0.80	0.40	ug/L		
Methyl tertiary butyl ether (MTBE)	1634-04		8260D	0.80		1.0	0.80	0.40	ug/L		
4-Methyl-2-pentanone	108-10		8260D	4.0		10	4.0	2.0	ug/L		
Methylcyclohexane	108-87		8260D	0.80		5.0	0.80	0.40	ug/L		
Methylene chloride	75-09		8260D	0.80		1.0	0.80	0.40	ug/L		
Naphthalene	91-20		8260D	0.80		1.0	0.80	0.40	ug/L		
Styrene	100-42		8260D	0.82		1.0	0.82	0.41	ug/L		
1,1,2,2-Tetrachloroethane	79-34		8260D	0.80		1.0	0.80	0.40	ug/L		
Tetrachloroethene	127-18	3-4	8260D	0.80		1.0	0.80	0.40	ug/L		
Toluene	108-88	3-3	8260D	0.80		1.0	0.80	0.40	ug/L		
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13	3-1	8260D	0.84	UQ	1.0	0.84	0.42	ug/L	1	
1,2,4-Trichlorobenzene	120-82	2-1	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1	
1,1,1-Trichloroethane	71-55	5-6	8260D	0.80	UQ	1.0	0.80	0.40	ug/L	1	
OQ = Limit of Quantitation B = Detected in	the method blank E = Quan	titation of com	oound exceeded the	calibratior	n range	DL = Detection Li	mit	Q	= Surroga	te fail	
J = Not detected at or above the LOD N = Recovery is	out of criteria P = The R	PD hetween t	wo GC columns exc	eeds 40%		J = Estimated res	ult < LOQ and :		= LCS/LC		

	· · · · ·	ie eiga		mpouna		.				
Client: Arcadis U.S., Inc.						Laboratory I	D: YI30001	-014		
Description: Z2-52R_0923						Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1600		Project Na	ame: JBC	Air, LTM						
Date Received: 09/29/2023		Project Num	nber:							
RunPrep Method15030B	Analytical Method 8260D	Dilution 1		Date Analys 23 0456 CCO	t Prep Date	Batch 87138				
Parameter		CA Numbe	AS A	Analytical Method	Result Q	LOQ	LOD	DL	Units	Run
1,1,2-Trichloroethane		79-00 [.]	-5	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01	-6	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69	-4	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01	-4	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20	-7	8260D	0.80 UQ	1.0	0.80	0.40	ug/L	1
Surrogate	Q %	Run 1 A Recovery	Acceptant Limits	ce						
1,2-Dichloroethane-d4	N	119	81-118							
Bromofluorobenzene		101	85-114							
Toluene-d8		105	89-112							
Dibromofluoromethane		108	80-119							

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	-014		
Description: Z2-52R 0923					,	x: Aqueou			
Date Sampled:09/28/2023 1600		Project Na	me: JBC Air, LTM			•			
Date Received: 09/29/2023	Pr	roject Num	ber:						
RunPrep Method13520C	Analytical Method 8270E (SIM)		Analysis Date Analyst 10/13/2023 1804 JCG	Prep Date 10/05/2023 11	Batch 34 86606				
Parameter		CA Numbe		Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86-	5 8270E (SIM)	0.098 U	0.98	0.098	0.027	ug/L	1
Surrogate		Run 1 A ecovery	cceptance Limits						
Fluoranthene-d10		93	23-154						
2-Methylnaphthalene-d10		77	15-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.							Laboratory ID: YI30001-015					
Description: Z2-53_0923							Matrix	k: Aqueou	s			
Date Sampled:09/28/2023 1440		Project N	ame: J	BC Air, LTM								
Date Received: 09/29/2023		Project Number:										
Run Prep Method 1 5030B	Analytical Method 8260D	Dilution 1		vsis Date Analyst 2023 2309 CCO	t Prej	o Date	Batch 87138					
Parameter		C/ Numb	AS er	Analytical Method	Result	0	LOQ	LOD	DL	Units	R	
Acetone		67-64	-1	8260D	10		20	10	5.0	ug/L		
Benzene		71-43		8260D	0.80		1.0	0.80	0.40	ug/L		
Bromodichloromethane		75-27		8260D	0.80		1.0	0.80	0.40	ug/L		
Bromoform		75-25		8260D	0.80		1.0	0.80	0.40	ug/L		
Bromomethane (Methyl bromide)		74-83		8260D	0.80		2.0	0.80	0.40	ug/L		
2-Butanone (MEK)		78-93		8260D	4.0		10	4.0	2.0	ug/L		
Carbon disulfide		75-15		8260D	0.80		1.0	0.80	0.40	ug/L		
Carbon tetrachloride		56-23		8260D	0.80		1.0	0.80	0.40	ug/L		
Chlorobenzene		108-90		8260D	0.80		1.0	0.80	0.40	ug/L		
Chloroethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L		
Chloroform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L		
Chloromethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.40	ug/L		
		110-82	-	8260D 8260D	0.80		2.0 1.0	0.80		ug/L		
Cyclohexane	D)	96-12			0.80				0.40	-		
1,2-Dibromo-3-chloropropane (DBC Dibromochloromethane	Ρ)	96-12 124-48		8260D 8260D	0.80		1.0 1.0	0.80 0.80	0.40	ug/L ug/L		
									0.40			
1,2-Dibromoethane (EDB)		106-93		8260D	0.80		1.0	0.80	0.40	ug/L		
1,2-Dichlorobenzene		95-50		8260D	0.80		1.0	0.80	0.40	ug/L		
1,3-Dichlorobenzene		541-73		8260D	0.80		1.0	0.80	0.40	ug/L		
1,4-Dichlorobenzene		106-46		8260D	0.80		1.0	0.80	0.40	ug/L		
Dichlorodifluoromethane		75-71		8260D	1.2		2.0	1.2	0.60	ug/L		
1,1-Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.40	ug/L		
1,2-Dichloroethane		107-06		8260D	0.80		1.0	0.80	0.40	ug/L		
1,1-Dichloroethene		75-35		8260D	0.80		1.0	0.80	0.40	ug/L		
cis-1,2-Dichloroethene		156-59		8260D	0.80		1.0	0.80	0.40	ug/L		
trans-1,2-Dichloroethene		156-60		8260D	0.80		1.0	0.80	0.40	ug/L		
1,2-Dichloropropane		78-87		8260D	0.80		1.0	0.80	0.40	ug/L		
cis-1,3-Dichloropropene		10061-01	-	8260D	0.80		1.0	0.80	0.40	ug/L		
trans-1,3-Dichloropropene		10061-02		8260D	0.80		1.0	0.80	0.40	ug/L		
Ethylbenzene		100-41		8260D	0.80		1.0	0.80	0.40	ug/L		
2-Hexanone		591-78		8260D	4.0		10	4.0	2.0	ug/L		
Isopropylbenzene		98-82		8260D	0.80		1.0	0.80	0.40	ug/L		
Methyl acetate		79-20		8260D	0.80		1.0	0.80	0.40	ug/L		
Methyl tertiary butyl ether (MTBE)		1634-04	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L		
4-Methyl-2-pentanone		108-10	-1	8260D	4.0	U	10	4.0	2.0	ug/L		
Methylcyclohexane		108-87	-2	8260D	0.80	U	5.0	0.80	0.40	ug/L		
Methylene chloride		75-09	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L		
Naphthalene		91-20	-3	8260D	0.80	U	1.0	0.80	0.40	ug/L		
Styrene		100-42	-5	8260D	0.82	U	1.0	0.82	0.41	ug/L		
1,1,2,2-Tetrachloroethane		79-34	-5	8260D	0.80	U	1.0	0.80	0.40	ug/L		
Tetrachloroethene		127-18	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L		
Toluene		108-88	-3	8260D	0.80	U	1.0	0.80	0.40	ug/L		
1,1,2-Trichloro-1,2,2-Trifluoroethane	•	76-13	i-1	8260D	0.84	U	1.0	0.84	0.42	ug/L		
1,2,4-Trichlorobenzene		120-82	-1	8260D	0.80	U	1.0	0.80	0.40	ug/L		
1,1,1-Trichloroethane		71-55	-6	8260D	0.80	U	1.0	0.80	0.40	ug/L		
OQ = Limit of Quantitation B = De	etected in the method blan	k E = Quant	titation of	compound exceeded the	calibration	range	DL = Detection Lin	nit	Q	= Surroga	ite fa	
	ecovery is out of criteria			een two GC columns exc		•	J = Estimated resu			= LCS/LC		

Client: Arcadis U.S., Inc.			-	-	Laboratory I	D: YI30001	-015		
Description: Z2-53_0923						x: Aqueou			
Date Sampled:09/28/2023 1440		Proiect Na	ame: JBC Air, LTM				-		
Date Received: 09/29/2023	1	Project Num							
RunPrep Method15030B	Analytical Method 8260D		Analysis Date Analyst 10/11/2023 2309 CCO	Prep Date	Batch 87138				
Parameter		CA Numbe		Result Q	LOQ	LOD	DL	Units	Ru
1,1,2-Trichloroethane		79-00-	-5 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01-	-6 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20-	-7 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Surrogate		Run 1 A Recovery	cceptance Limits						
1,2-Dichloroethane-d4		117	81-118						
Bromofluorobenzene		101	85-114						
Toluene-d8		104	89-112						
Dibromofluoromethane		106	80-119						

	LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
H = Out of holding time W = Reported on wet weight basis LOD = Limit of Detection S = MS/MSD	U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
	H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Semivolatile Organic Compounds by GC/MS (SIM)

			-	-					
Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	-015		
Description: Z2-53_0923					Matri	x: Aqueou	s		
Date Sampled:09/28/2023 1440	Proj	ject Name:	JBC Air, LTM						
Date Received: 09/29/2023	Projec	ct Number:							
Run Prep Method	Analytical Method Dilu	ition Ana	alysis Date Analys	t Prep Date	Batch				
1 3520C	8270E (SIM)	1 10/1	3/2023 1829 JCG	10/05/2023 11	34 86606				
Parameter	١	CAS Number	Analytical Method	Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86-5	8270E (SIM)	0.098 U	0.98	0.098	0.027	ug/L	1
Surrogate	Run Q % Reco		ptance mits						
Fluoranthene-d10	92	23	3-154						
2-Methylnaphthalene-d10	78	15	5-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E=Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Client: Arcadis U.S., Inc.				Compounds			Laboratory ID	: YI30001	-016		
Description: Z2-54_0923							Matrix	: Aqueou	s		
Date Sampled:09/29/2023 1415		Project N	ame [.] .I	BC Air, LTM					•		
Date Received: 09/29/2023				Bo An, Erm							
Date Received. 09/29/2023		Project Nur	nber.								
RunPrep MethodA15030B	Analytical Method 8260D	Dilution 1		/sis Date Analyst /2023 1541 DPH	Prep	Date	Batch 87165				
Parameter		C/ Numb	AS er	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Acetone		67-64	-1	8260D	10	U	20	10	5.0	ug/L	1
Benzene		71-43	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Bromodichloromethane		75-27	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Bromoform		75-25	-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Bromomethane (Methyl bromide)		74-83	-9	8260D	0.80	U	2.0	0.80	0.40	ug/L	1
2-Butanone (MEK)		78-93	-3	8260D	4.0		10	4.0	2.0	ug/L	1
Carbon disulfide		75-15		8260D	0.80		1.0	0.80	0.40	ug/L	1
Carbon tetrachloride		56-23	-5	8260D	0.80		1.0	0.80	0.40	ug/L	1
Chlorobenzene		108-90		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chloroethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L	1
Chloroform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L	1
Chloromethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.50	ug/L	1
Cyclohexane		110-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP	b)	96-12		8260D	0.80		1.0	0.80	0.40	ug/L	1
Dibromochloromethane)	124-48		8260D	0.80		1.0	0.80	0.40	ug/L	1
1,2-Dibromoethane (EDB)		106-93		8260D	0.80		1.0	0.80	0.40	ug/L	
1,2-Dichlorobenzene		95-50		8260D	0.80		1.0	0.80	0.40	ug/L	
1,3-Dichlorobenzene		541-73		8260D	0.80		1.0	0.80	0.40	ug/L	
1,4-Dichlorobenzene		106-46		8260D	0.80		1.0	0.80	0.40	ug/L	
Dichlorodifluoromethane		75-71		8260D	1.2		2.0	1.2	0.40	ug/L	
1,1-Dichloroethane		75-34		8260D	0.80		1.0	0.80		ug/L	1
1,2-Dichloroethane		107-06		8260D	0.80		1.0	0.80	0.40	ug/L	1
1.1-Dichloroethene		75-35		8260D	0.80		1.0	0.80	0.40	ug/L	1
cis-1,2-Dichloroethene		156-59		8260D 8260D	0.80		1.0	0.80	0.40	ug/L	1
trans-1,2-Dichloroethene		156-59		8260D 8260D	0.80		1.0	0.80	0.40	-	
									0.40	ug/L	1
1,2-Dichloropropane		78-87		8260D	0.80		1.0	0.80	0.40	ug/L	1
cis-1,3-Dichloropropene		10061-01		8260D	0.80		1.0	0.80	0.40	ug/L	1
trans-1,3-Dichloropropene		10061-02		8260D	0.80		1.0	0.80	0.40	ug/L	1
Ethylbenzene		100-41		8260D	0.80		1.0	0.80	0.40	ug/L	1
2-Hexanone		591-78		8260D	4.0		10	4.0	2.0	ug/L	1
Isopropylbenzene		98-82		8260D	0.80		1.0	0.80	0.40	ug/L	1
Methyl acetate		79-20		8260D	0.80		1.0	0.80	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)		1634-04		8260D	0.80		1.0	0.80	0.40	ug/L	1
4-Methyl-2-pentanone		108-10		8260D	4.0		10	4.0	2.0	ug/L	1
Methylcyclohexane		108-87		8260D	0.80		5.0	0.80	0.40	ug/L	1
Methylene chloride		75-09		8260D	0.80		1.0	0.80	0.40	ug/L	1
Naphthalene		91-20		8260D	0.80		1.0	0.80	0.40	ug/L	1
Styrene		100-42		8260D	0.82		1.0	0.82	0.41	ug/L	1
1,1,2,2-Tetrachloroethane		79-34	-5	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Tetrachloroethene		127-18	-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Toluene		108-88	-3	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane		76-13	i-1	8260D	0.84	U	1.0	0.84	0.42	ug/L	1
1,2,4-Trichlorobenzene		120-82	-1	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
1,1,1-Trichloroethane		71-55	-6	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
LOQ = Limit of Quantitation B = Det	ected in the method blan	E = Quant	titation of	compound exceeded the	calibration	range	DL = Detection Lim	it	Q	= Surroga	te failure
U = Not detected at or above the LOD N = Red	covery is out of criteria	P = The R	PD betw	een two GC columns exc	eeds 40%		J = Estimated result	t < LOQ and	≥DL L:	= LCS/LCS	SD failur
H = Out of holding time W = Re	ported on wet weight bas	is LOD = Lin	nit of Det	ection					S	= MS/MSE) failure

Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	-016		
Description: Z2-54_0923					Matri	x: Aqueou	s		
Date Sampled:09/29/2023 1415		Project Na	ime: JBC Air, LTM			-			
Date Received: 09/29/2023	I	Project Num	ber:						
RunPrep Method15030B	Analytical Method 8260D		Analysis Date Analyst 10/11/2023 1541 DPH	Prep Date	Batch 87165				
Parameter		CA Numbe		Result Q	LOQ	LOD	DL	Units	Ru
1,1,2-Trichloroethane		79-00-	5 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01-	6 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01-	4 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20-	7 8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Surrogate		Run 1 A Recovery	cceptance Limits						
1,2-Dichloroethane-d4		113	81-118						
Bromofluorobenzene		94	85-114						
Toluene-d8		101	89-112						
Dibromofluoromethane		114	80-119						

U = Not detected at or above the LOD N = Recovery is of				
0 = Not detected at of above the LOD $N = Recovery is detected at of above the LOD$	ut of criteria P = The RPD bety	ween two GC columns exceeds 40% J = Estim	nated result < LOQ and \geq DL L = LCS/LCSI	J failure
H = Out of holding time W = Reported on	wet weight basis LOD = Limit of De	etection	S = MS/MSD	failure

Semivolatile Organic Compounds by GC/MS (SIM)

Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	-016		
Description: Z2-54_0923					Matri	ix: Aqueou	S		
Date Sampled:09/29/2023 1415	Pro	oject Name	JBC Air, LTM						
Date Received: 09/29/2023	Proje	ect Number							
RunPrep Method13520C	·		alysis Date Analys 13/2023 1853 JCG	t Prep Date 10/05/2023 11	Batch 34 86606				
Parameter		CAS Number	Analytical Method	Result Q	LOQ	LOD	DL	Units	Run
Pentachlorophenol		87-86-5	8270E (SIM)	0.097 U	0.97	0.097	0.027	ug/L	1
Surrogate	Rur Q % Reco		ptance mits						
Fluoranthene-d10	10	00 23	3-154						
2-Methylnaphthalene-d10	80	6 18	5-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

	Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-017		
De	escription: MW-01-129_0923							Matri	x: Aqueou	s		
Date	Sampled:09/29/2023 1555		Project N	ame: 🕻	JBC Air, LTM							
Date	Received: 09/29/2023		Project Nur	nber:								
Run 1	Prep Method 5030B	Analytical Method 8260D	Dilution		ysis Date Analyst /2023 1606 DPH	Prej	p Date	Batch 87165				
Para	ameter		C. Numb	AS er	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Ru
Acet	one		67-64	I-1	8260D	10	UM-03	20	10	5.0	ug/L	1
Benz	zene		71-43	3-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Brom	nodichloromethane		75-27	7-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Brom	noform		75-25	5-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Brom	nomethane (Methyl bromide)		74-83	3-9	8260D	0.80	U	2.0	0.80	0.40	ug/L	
2-Bu	tanone (MEK)		78-93	3-3	8260D	4.0	U	10	4.0	2.0	ug/L	
Carb	on disulfide		75-15	5-0	8260D	0.80	U	1.0	0.80	0.40	ug/L	
Carb	on tetrachloride		56-23	8-5	8260D	0.80	U	1.0	0.80	0.40	ug/L	
Chlo	robenzene		108-90		8260D	0.80		1.0	0.80	0.40	ug/L	
	roethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L	
	roform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L	
	romethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.50	ug/L	
	ohexane		110-82		8260D	0.80		1.0	0.80	0.40	ug/L	
-	Dibromo-3-chloropropane (DB)	וםר	96-12		8260D	0.80		1.0	0.80	0.40	ug/L	
	omochloromethane	JF)	124-48		8260D	0.80		1.0	0.80	0.40	ug/L	
	Dibromoethane (EDB)		106-93		8260D	0.80		1.0	0.80		ug/L	
	Dichlorobenzene		95-50		8260D	0.80		1.0	0.80	0.40	-	
,			95-50 541-73		8260D 8260D	0.80				0.40	ug/L	
,						0.80		1.0	0.80	0.40	ug/L	
-			106-46		8260D			1.0	0.80	0.40	ug/L	
			75-71		8260D	1.2		2.0	1.2	0.60	ug/L	
,	Dichloroethane		75-34		8260D	0.80		1.0	0.80	0.40	ug/L	
,	Dichloroethane		107-06		8260D	0.80		1.0	0.80	0.40	ug/L	
-	Dichloroethene		75-35		8260D	0.80		1.0	0.80	0.40	ug/L	
	,2-Dichloroethene		156-59		8260D	0.80		1.0	0.80	0.40	ug/L	
	-1,2-Dichloroethene		156-60		8260D	0.80		1.0	0.80	0.40	ug/L	
1,2-0	Dichloropropane		78-87		8260D	0.80		1.0	0.80	0.40	ug/L	
	,3-Dichloropropene		10061-01	-	8260D	0.80		1.0	0.80	0.40	ug/L	
trans	s-1,3-Dichloropropene		10061-02	2-6	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Ethy	Ibenzene		100-41	-4	8260D	8.3		1.0	0.80	0.40	ug/L	1
	exanone		591-78	8-6	8260D	4.0	U	10	4.0	2.0	ug/L	
lsop	ropylbenzene		98-82		8260D	1.8		1.0	0.80	0.40	ug/L	1
Meth	yl acetate		79-20)-9	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Meth	yl tertiary butyl ether (MTBE)		1634-04	1-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
4-Me	thyl-2-pentanone		108-10)-1	8260D	4.0	U	10	4.0	2.0	ug/L	1
Meth	lylcyclohexane		108-87	'-2	8260D	0.80	U	5.0	0.80	0.40	ug/L	1
Meth	ylene chloride		75-09	9-2	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Napl	hthalene		91-20)-3	8260D	62		1.0	0.80	0.40	ug/L	1
Styre	ene		100-42	2-5	8260D	0.82	U	1.0	0.82	0.41	ug/L	1
1,1,2	2,2-Tetrachloroethane		79-34	I-5	8260D	0.80	U	1.0	0.80	0.40	ug/L	1
Tetra	achloroethene		127-18	8-4	8260D	0.80	U	1.0	0.80	0.40	ug/L	
Tolu	ene		108-88	8-3	8260D	0.80	U	1.0	0.80	0.40	ug/L	
1,1.2	P-Trichloro-1,2,2-Trifluoroethan	e	76-13		8260D	0.84		1.0	0.84	0.42	ug/L	
	-Trichlorobenzene		120-82		8260D	0.80		1.0	0.80	0.40	ug/L	
	-Trichloroethane		71-55		8260D	0.80		1.0	0.80	0.40	ug/L	
		Detected in the method blan			f compound exceeded the		•	DL = Detection Lir			= Surroga	
II – Not	detected at or above the LOD N = F	Recovery is out of criteria	P = The F	RPD betw	veen two GC columns exc	eeds 40%		J = Estimated resu	It < LOQ and	≥DL L	= LCS/LC	SD failu

					Laboratory I	D: YI30001	-017		
					Matri	x: Aqueou	s		
	Project N	Name: JBC	CAir, LTM						
	Project Nu	mber:							
		•	•	t Prep Date	Batch 87165				
	C Numi	AS ber	Analytical Method	Result Q	LOQ	LOD	DL	Units	Run
	79-0	0-5	8260D	0.80 U	1.0	0.80	0.40	ug/L	1
	79-0	1-6	8260D	0.80 U	1.0	0.80	0.40	ug/L	1
	75-6	9-4	8260D	0.80 U	1.0	0.80	0.40	ug/L	1
	75-0	1-4	8260D	0.80 U	1.0	0.80	0.40	ug/L	1
	1330-2	0-7	8260D	3.6	1.0	0.80	0.40	ug/L	
Q									
	114	81-118	3						
	104	85-114	Ļ						
	103	89-112	2						
	113	80-119)						
	8260	Project Nu Analytical Method 8260D 1 Num 79-0 79-0 79-0 79-0 79-0 75-6 75-0 1330-2 14 104 104 103	Project Number: Analytical Method Dilution Analysis 8260D 1 10/11/20 CAS Number CAS 79:00-5 79:01-6 75:69-4 75:01-4 1330-20-7 1330-20-7 Q % Recovery Limits 114 81:118 104 85:114 103 89:112	Analytical Method 8260D Dilution 1 Analysis Date Analysis 10/11/2023 1606 DPH CAS Number Analytical Method 79-00-5 8260D 79-01-6 8260D 75-69-4 8260D 75-01-4 8260D 1330-20-7 8260D 114 81-118 104 85-114 103 89-112	Project Number: Analytical Method Dilution Analysis Date Analysis Prep Date 8260D 1 10/11/2023 1606 DPH Prep Date Kumber Analytical 10/11/2023 1606 DPH Prep Date Result Q Q Q 79-00-5 8260D 0.80 U 0 79-01-6 8260D 0.80 U 0 75-69-4 8260D 0.80 U 0 75-01-4 8260D 0.80 U 0 1330-20-7 8260D 0.80 U 0 Resolvery Limits Limits Limits Limits 114 81-118 104 85-114 U 103 89-112 U U U	Matri Project Name: JBC Air, LTM Project Number: Project Number: Prep Date Batch 87165 Analytical Method Dilution Analysis Date Analyst Prep Date Batch 87165 Mumber Mumber Method DPrep Date Batch 87165 Mumber Mumber Method Result Q LOQ Mumber Matri Method Result Q LOQ T9-00-5 8260D 0.80 U 1.0 1.0 1.0 1.0 T9-01-6 8260D 0.80 U 1.0	Matrix: JBC Air, LTM Project Number: Analytical Method Dilution Analysis Date Analyst Prep Date Batch 82600 1 10/11/2023 1606 DPH Prep Date Batch 87165 Kumber Kumber Analytical Method Analytical Result Q LOQ LOD 1 10/11/2023 1606 DPH 10 0.80 0.80 0.80 1.0 0.80 Kethod Result Q LOQ LOD 0.80 0	Project Number: Analytical Method Dilution Analysis Date Analysis Prep Date Batch 87165 Value Description Description <thdescription< th=""> Description</thdescription<>	Matrix: Aqueous Project Name: JBC Air, LTM Project Number: Analytical Method Dilution Analysis Date Analyst 10/11/2023 1606 DPH Prep Date Batch 87165 Batch 87165 Mumber Analytical Method Analytical Method Result Q LOQ LOD DL Units 79-00-5 8260D 0.80 U 1.0 0.80 0.40 ug/L 79-00-5 8260D 0.80 U 1.0 0.80 0.40 ug/L 79-01-6 8260D 0.80 U 1.0 0.80 0.40 ug/L 75-69-4 8260D 0.80 U 1.0 0.80 0.40 ug/L 75-69-4 8260D 0.80 U 1.0 0.80 0.40 ug/L 75-69-4 8260D 0.80 U 1.00 0.80 0.40 ug/L 1330-20-7 8260D 0.80 U 1.00 0.80 0.40 ug/L 9 Recovery Limits 1.04 85-114 1.03 89-112 1.0 0.80 1.0

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Semivolatile Organic Compounds by GC/MS (SIM)

Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-017		
Description: MW-01-129_0923							Matri	x: Aqueou	5		
Date Sampled:09/29/2023 1555		Project N	lame: JBC A i	r, LTM							
Date Received: 09/29/2023	I	Project Nu	mber:								
RunPrep Method13520C	Analytical Method 8270E (SIM)	Dilution 20	Analysis D 10/16/2023	ate Analys 1253 JCG	•	Date 2023 1	Batch 134 86606				
Parameter		C Numb	AS Ana ber M	alytical lethod	Result	Q	LOQ	LOD	DL	Units	Run
Naphthalene		91-20	0-3 8270	E (SIM)	32		6.5	2.0	0.97	ug/L	1
Surrogate		Run 1 Recovery	Acceptance Limits								
Fluoranthene-d10		95	23-154								
2-Methylnaphthalene-d10		81	15-139								

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

	Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-018			
De	escription: MW-01-129_0923-a							Matrix: Aqueous					
Date	Sampled:09/29/2023 1555		Project N	lame: J l	BC Air, LTM								
Date	Received: 09/29/2023		Project Nur	mber:									
	Prep Method	Analytical Method	,		sis Date Analyst	Prer	Date	Batch					
1	5030B	8260D	1		2023 1359 DPH		Duit	87165					
_			C/ Numb	AS	Analytical		_					_	
	ameter					Result		LOQ	LOD	DL	Units		
Acet			67-64		8260D	10		20	10	5.0	ug/L		
	zene		71-43		8260D	0.80		1.0	0.80	0.40	ug/L		
	nodichloromethane		75-27		8260D	0.80		1.0	0.80	0.40	ug/L		
	noform		75-25		8260D	0.80		1.0	0.80	0.40	ug/L		
	nomethane (Methyl bromide)		74-83		8260D	0.80		2.0	0.80	0.40	ug/L		
	tanone (MEK)		78-93		8260D	4.0		10	4.0	2.0	ug/L		
	on disulfide		75-15		8260D	0.80		1.0	0.80	0.40	ug/L		
	oon tetrachloride		56-23	-	8260D	0.80		1.0	0.80	0.40	ug/L		
	robenzene		108-90		8260D	0.80		1.0	0.80	0.40	ug/L		
	roethane		75-00		8260D	0.80		2.0	0.80	0.40	ug/L		
	roform		67-66		8260D	0.80		1.0	0.80	0.40	ug/L		
Chlo	romethane (Methyl chloride)		74-87		8260D	1.0		2.0	1.0	0.50	ug/L		
•	ohexane		110-82	2-7	8260D	0.47		1.0	0.80	0.40	ug/L		
'	Dibromo-3-chloropropane (DBC	CP)	96-12		8260D	0.80		1.0	0.80	0.40	ug/L		
	omochloromethane		124-48	3-1	8260D	0.80	U	1.0	0.80	0.40	ug/L		
1,2-[Dibromoethane (EDB)		106-93	3-4	8260D	0.80	U	1.0	0.80	0.40	ug/L		
,2-[Dichlorobenzene		95-50)-1	8260D	0.80	U	1.0	0.80	0.40	ug/L		
1,3-[Dichlorobenzene		541-73	3-1	8260D	0.80	U	1.0	0.80	0.40	ug/L		
I,4-E	Dichlorobenzene		106-46	6-7	8260D	0.80	U	1.0	0.80	0.40	ug/L		
Dich	lorodifluoromethane		75-71	I-8	8260D	1.2	U	2.0	1.2	0.60	ug/L		
1,1-[Dichloroethane		75-34	1-3	8260D	0.80	U	1.0	0.80	0.40	ug/L		
1,2-[Dichloroethane		107-06	6-2	8260D	0.80	U	1.0	0.80	0.40	ug/L		
1,1-[Dichloroethene		75-35	5-4	8260D	0.80	U	1.0	0.80	0.40	ug/L		
cis-1	,2-Dichloroethene		156-59	9-2	8260D	0.80	U	1.0	0.80	0.40	ug/L		
rans	s-1,2-Dichloroethene		156-60)-5	8260D	0.80	U	1.0	0.80	0.40	ug/L		
1,2-[Dichloropropane		78-87	7-5	8260D	0.80	U	1.0	0.80	0.40	ug/L		
cis-1	,3-Dichloropropene		10061-01	-5	8260D	0.80	U	1.0	0.80	0.40	ug/L		
rans	s-1,3-Dichloropropene		10061-02	2-6	8260D	0.80	U	1.0	0.80	0.40	ug/L		
	Ibenzene		100-41		8260D	8.6		1.0	0.80	0.40	ug/L		
-	exanone		591-78		8260D	4.0	U	10	4.0	2.0	ug/L		
	ropylbenzene		98-82		8260D	1.8	-	1.0	0.80	0.40	ug/L		
-	nyl acetate		79-20		8260D	0.80	U	1.0	0.80	0.40	ug/L		
	yl tertiary butyl ether (MTBE)		1634-04		8260D	0.80		1.0	0.80	0.40	ug/L		
	ethyl-2-pentanone		108-10		8260D	4.0		10	4.0	2.0	ug/L		
	nylcyclohexane		108-87		8260D	0.80		5.0	0.80	0.40	ug/L		
	vlene chloride		75-09		8260D	0.80		1.0	0.80	0.40	ug/L		
	hthalene		91-20		8260D	60	-	1.0	0.80	0.40 0.40	ug/L		
Styre			100-42		8260D	0.82	U	1.0	0.82	0.40	ug/L		
	2,2-Tetrachloroethane		79-34		8260D	0.80		1.0	0.80	0.41	ug/L		
	achloroethene		127-18		8260D	0.80		1.0	0.80	0.40	ug/L		
Folu			108-88		8260D	0.80		1.0	0.80	0.40	ug/L		
	ene 2-Trichloro-1,2,2-Trifluoroethan	٥	76-13		8260D 8260D	0.80		1.0	0.80	0.40			
					8260D 8260D						ug/L		
	I-Trichlorobenzene I-Trichloroethane		120-82 71-55		8260D 8260D	0.80 0.80		1.0 1.0	0.80 0.80	0.40 0.40	ug/L ug/L		
	-							-		-	3-		
		Detected in the method blanl Recovery is out of criteria			compound exceeded the een two GC columns exce		-	DL = Detection Lim J = Estimated resu			= Surroga = LCS/LC		
		Reported on wet weight bas				55U3 40%		u – ∟sumateu resu			= LCS/LC; = MS/MS[

Client: Arcadis U.S., Inc.							Laboratory I	D: YI30001	-018		
Description: MW-01-129_0923-a	a						Matri	x: Aqueou	s		
Date Sampled:09/29/2023 1555		Project Na	ame: JBC	Air, LTM							
Date Received: 09/29/2023		Project Num	nber:								
RunPrep Method15030B	Analytical Methoo 8260D		•	Date Analys 23 1359 DPH	t Prep	Date	Batch 87165				
Parameter		CA Numbe	AS A	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Ru
1,1,2-Trichloroethane		79-00·	-5	8260D	0.80	J	1.0	0.80	0.40	ug/L	1
Trichloroethene		79-01·	-6	8260D	0.80	J	1.0	0.80	0.40	ug/L	1
Trichlorofluoromethane		75-69·	-4	8260D	0.80	J	1.0	0.80	0.40	ug/L	1
Vinyl chloride		75-01	-4	8260D	0.80	J	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-20	-7	8260D	3.6		1.0	0.80	0.40	ug/L	1
Surrogate	Q %	Run 1 A Recovery	cceptano Limits	ce							
1,2-Dichloroethane-d4		112	81-118								
Bromofluorobenzene		100	85-114								
Toluene-d8		101	89-112								
Dibromofluoromethane		111	80-119								

U = Not detected at or above the LOD N = Recovery is of				
0 = Not detected at of above the LOD $N = Recovery is detected at of above the LOD$	ut of criteria P = The RPD bety	ween two GC columns exceeds 40% J = Estim	nated result < LOQ and \geq DL L = LCS/LCSI	J failure
H = Out of holding time W = Reported on	wet weight basis LOD = Limit of De	etection	S = MS/MSD	failure

Semivolatile Organic Compounds by GC/MS (SIM)

Client: Arcadis U.S., Inc.					Laboratory I	D: YI30001	018		
Description: MW-01-129_0923-	a				Matri	x: Aqueous	6		
Date Sampled:09/29/2023 1555	P	roject Na	ame: JBC Air, LTM						
Date Received: 09/29/2023	Pro	ject Num	nber:						
RunPrep Method13520C	Analytical Method D 8270E (SIM)	ilution 20	Analysis Date Analyst 10/16/2023 1318 JCG	Prep Date 10/05/2023 11	Batch 34 86606				
Parameter		CA Numbe	AS Analytical er Method	Result Q	LOQ	LOD	DL	Units	Run
Naphthalene		91 - 20	-3 8270E (SIM)	30	6.3	1.9	0.95	ug/L	1
Surrogate		un 1 A covery	Acceptance Limits						
Fluoranthene-d10		91	23-154						
2-Methylnaphthalene-d10		77	15-139						

LOQ = Limit of Quantitation	B = Detected in the method blank	E=Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

QC Summary

Sample ID: YQ87040-001 Batch: 87040 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Acetone	10	U	1	20	10	5.0	ug/L	10/10/2023 2224
Benzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Bromodichloromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Bromoform	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Bromomethane (Methyl bromide)	0.80	U	1	2.0	0.80	0.40	ug/L	10/10/2023 2224
2-Butanone (MEK)	4.0	U	1	10	4.0	2.0	ug/L	10/10/2023 2224
Carbon disulfide	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Carbon tetrachloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Chlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Chloroethane	0.80	U	1	2.0	0.80	0.40	ug/L	10/10/2023 2224
Chloroform	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Chloromethane (Methyl chloride)	1.0	U	1	2.0	1.0	0.50	ug/L	10/10/2023 2224
Cyclohexane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,2-Dibromo-3-chloropropane (DBCP)	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Dibromochloromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,2-Dibromoethane (EDB)	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,2-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,3-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,4-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Dichlorodifluoromethane	1.2	U	1	2.0	1.2	0.60	ug/L	10/10/2023 2224
1,1-Dichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,2-Dichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,1-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
cis-1,2-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
trans-1,2-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,2-Dichloropropane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
cis-1,3-Dichloropropene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
trans-1,3-Dichloropropene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Ethylbenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
2-Hexanone	4.0	U	1	10	4.0	2.0	ug/L	10/10/2023 2224
Isopropylbenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Methyl acetate	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Methyl tertiary butyl ether (MTBE)	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
4-Methyl-2-pentanone	4.0	U	1	10	4.0	2.0	ug/L	10/10/2023 2224
Methylcyclohexane	0.80	U	1	5.0	0.80	0.40	ug/L	10/10/2023 2224
Methylene chloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Naphthalene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Styrene	0.82	U	1	1.0	0.82	0.41	ug/L	10/10/2023 2224
1,1,2,2-Tetrachloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Tetrachloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Toluene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.84	U	1	1.0	0.84	0.42	ug/L	10/10/2023 2224
1,2,4-Trichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
1,1,1-Trichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
.,.,	0.00	0			0.00	0.40	~9/ L	

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87040-001 Batch: 87040 Analytical Method: 8260D

Matrix: Aqueous

Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
1,1,2-Trichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Trichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Trichlorofluoromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Vinyl chloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Xylenes (total)	0.80	U	1	1.0	0.80	0.40	ug/L	10/10/2023 2224
Surrogate	Q % I	Rec	Accep Lim					
1,2-Dichloroethane-d4	10	9	81-	118				
Bromofluorobenzene	92	2	85-	114				
Toluene-d8	99	Э	89-	112				
Dibromofluoromethane	11	1	80-	119				

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL P = The RPD between two GC columns exceeds 40% + = RPD is out of criteria LOD = Limit of Detection * = RSD is out of criteria

Sample ID: YQ87040-002 Batch: 87040 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

Parameter	Spike Amount	Result	Q		% Rec	%Rec Limit	Analysis Deta
Parameter	(ug/L)	(ug/L)		Dil			Analysis Date
Acetone	100	94	M-03	1	94	39-160	10/10/2023 2134
Benzene	50	45		1	91	79-120	10/10/2023 2134
Bromodichloromethane	50	45		1	89	79-125	10/10/2023 213
Bromoform	50	46		1	93	66-130	10/10/2023 213
Bromomethane (Methyl bromide)	50	45		1	89	53-141	10/10/2023 213
2-Butanone (MEK)	100	82		1	82	56-143	10/10/2023 2134
Carbon disulfide	50	41		1	81	64-133	10/10/2023 213
Carbon tetrachloride	50	43		1	87	72-136	10/10/2023 2134
Chlorobenzene	50	46		1	91	82-118	10/10/2023 213
Chloroethane	50	41		1	83	60-138	10/10/2023 213
Chloroform	50	39		1	79	79-124	10/10/2023 2134
Chloromethane (Methyl chloride)	50	43		1	86	50-139	10/10/2023 2134
Cyclohexane	50	36		1	72	71-130	10/10/2023 213
1,2-Dibromo-3-chloropropane (DBCP)	50	45		1	90	62-128	10/10/2023 213
Dibromochloromethane	50	49		1	98	74-126	10/10/2023 213
1,2-Dibromoethane (EDB)	50	49		1	99	77-121	10/10/2023 213
1,2-Dichlorobenzene	50	46		1	92	80-119	10/10/2023 2134
1,3-Dichlorobenzene	50	47		1	94	80-119	10/10/2023 213
1,4-Dichlorobenzene	50	45		1	90	79-118	10/10/2023 213
Dichlorodifluoromethane	50	42	M-03	1	84	32-152	10/10/2023 213
1,1-Dichloroethane	50	38	Ν	1	76	77-125	10/10/2023 213
1,2-Dichloroethane	50	45		1	90	73-128	10/10/2023 213
1,1-Dichloroethene	50	41		1	82	71-131	10/10/2023 213
cis-1,2-Dichloroethene	50	40		1	79	78-123	10/10/2023 213
trans-1,2-Dichloroethene	50	42		1	84	75-124	10/10/2023 213
1,2-Dichloropropane	50	43		1	87	78-122	10/10/2023 213
cis-1,3-Dichloropropene	50	44		1	89	75-124	10/10/2023 213
trans-1,3-Dichloropropene	50	43		1	87	73-127	10/10/2023 213
Ethylbenzene	50	47		1	95	79-121	10/10/2023 213
2-Hexanone	100	96		1	96	57-139	10/10/2023 2134
Isopropylbenzene	50	48		1	96	72-131	10/10/2023 213
Methyl acetate	50	46		1	92	56-136	10/10/2023 2134
Methyl tertiary butyl ether (MTBE)	50	42		1	84	71-124	10/10/2023 2134
4-Methyl-2-pentanone	100	87		1	87	67-130	10/10/2023 2134
Methylcyclohexane	50	43		1	86	72-132	10/10/2023 2134
Methylene chloride	50	41		1	81	74-124	10/10/2023 2134
Naphthalene	50	49		1	99	61-128	10/10/2023 2134
Styrene	50	48		1	97	78-123	10/10/2023 2134
1,1,2,2-Tetrachloroethane	50	43		1	86	71-121	10/10/2023 2134
Tetrachloroethene	50	48		1	96	74-129	10/10/2023 2134
Toluene	50	47		1	94	80-121	10/10/2023 2134
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	40		1	81	70-136	10/10/2023 2134
1,2,4-Trichlorobenzene	50	47		1	93	69-130	10/10/2023 2134
1,1,1-Trichloroethane	50	42		1	84	74-131	10/10/2023 2134

LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria
DL = Detection Limit	J = Estimated result < LOQ and \ge DL	P = The RPD between two GC columns exceeds 40%
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87040-0 Batch: 87040 Analytical Method: 8260D	02	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date				
1,1,2-Trichloroethane	50	46		1	91	80-119	10/10/2023 2134				
Trichloroethene	50	48		1	95	79-123	10/10/2023 2134				
Trichlorofluoromethane	50	47	M-03	1	95	65-141	10/10/2023 2134				
Vinyl chloride	50	43		1	86	58-137	10/10/2023 2134				
Xylenes (total)	100	95		1	95	79-121	10/10/2023 2134				
Surrogate	Q% Rec	Accepta Limi									
1,2-Dichloroethane-d4	96	81-11	18								
Bromofluorobenzene	100	85-11	14								
Toluene-d8	97	89-11	12								
Dibromofluoromethane	90	80-11	19								

Sample ID: YQ87138-001 Batch: 87138 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Acetone	10	U	1	20	10	5.0	ug/L	10/11/2023 2105
Benzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Bromodichloromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Bromoform	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Bromomethane (Methyl bromide)	0.80	U	1	2.0	0.80	0.40	ug/L	10/11/2023 2105
2-Butanone (MEK)	4.0	U	1	10	4.0	2.0	ug/L	10/11/2023 2105
Carbon disulfide	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Carbon tetrachloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Chlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Chloroethane	0.80	U	1	2.0	0.80	0.40	ug/L	10/11/2023 2105
Chloroform	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Chloromethane (Methyl chloride)	1.0	U	1	2.0	1.0	0.50	ug/L	10/11/2023 2105
Cyclohexane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,2-Dibromo-3-chloropropane (DBCP)	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Dibromochloromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,2-Dibromoethane (EDB)	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,2-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,3-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,4-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Dichlorodifluoromethane	1.2	U	1	2.0	1.2	0.60	ug/L	10/11/2023 2105
1,1-Dichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,2-Dichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,1-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
cis-1,2-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
trans-1,2-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,2-Dichloropropane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
cis-1,3-Dichloropropene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
trans-1,3-Dichloropropene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Ethylbenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
2-Hexanone	4.0	U	1	10	4.0	2.0	ug/L	10/11/2023 2105
Isopropylbenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Methyl acetate	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Methyl tertiary butyl ether (MTBE)	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
4-Methyl-2-pentanone	4.0	U	1	10	4.0	2.0	ug/L	10/11/2023 2105
Methylcyclohexane	0.80	U	1	5.0	0.80	0.40	ug/L	10/11/2023 2105
Methylene chloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Naphthalene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Styrene	0.82	U	1	1.0	0.82	0.41	ug/L	10/11/2023 2105
1,1,2,2-Tetrachloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Tetrachloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Toluene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.84	U	1	1.0	0.84	0.42	ug/L	10/11/2023 2105
1,2,4-Trichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
1,1,1-Trichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
	0.00	0	I	1.0	0.00	0.70	ug/L	10/11/2020 2100

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87138-001 Batch: 87138 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
1,1,2-Trichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Trichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Trichlorofluoromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Vinyl chloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Xylenes (total)	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 2105
Surrogate	Q %	Rec	Accep Lin					
1,2-Dichloroethane-d4	11	17	81-	118				
Bromofluorobenzene	10)1	85-	114				
Toluene-d8	10)4	89-	112				
Dibromofluoromethane	1()4	80-	119				

Sample ID: YQ87138-002 Batch: 87138 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

	Spike						
Demonster	Amount	Result	•		04 D	%Rec	Averbasia Dete
Parameter	(ug/L)	(ug/L)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	100	74		1	74	39-160	10/11/2023 1925
Benzene	50	51		1	102	79-120	10/11/2023 1925
Bromodichloromethane	50	51		1	101	79-125	10/11/2023 1925
Bromoform	50	38		1	76	66-130	10/11/2023 1925
Bromomethane (Methyl bromide)	50	50		1	101	53-141	10/11/2023 1925
2-Butanone (MEK)	100	110		1	113	56-143	10/11/2023 1925
Carbon disulfide	50	50		1	101	64-133	10/11/2023 1925
Carbon tetrachloride	50	54		1	107	72-136	10/11/2023 1925
Chlorobenzene	50	50		1	100	82-118	10/11/2023 1925
Chloroethane	50	51		1	102	60-138	10/11/2023 1925
Chloroform	50	52		1	104	79-124	10/11/2023 1925
Chloromethane (Methyl chloride)	50	53		1	105	50-139	10/11/2023 1925
Cyclohexane	50	53		1	106	71-130	10/11/2023 1925
1,2-Dibromo-3-chloropropane (DBCP)	50	45		1	89	62-128	10/11/2023 1925
Dibromochloromethane	50	50		1	99	74-126	10/11/2023 1925
1,2-Dibromoethane (EDB)	50	53		1	106	77-121	10/11/2023 1925
1,2-Dichlorobenzene	50	48		1	95	80-119	10/11/2023 1925
1,3-Dichlorobenzene	50	49		1	97	80-119	10/11/2023 1925
1,4-Dichlorobenzene	50	48		1	96	79-118	10/11/2023 1925
Dichlorodifluoromethane	50	55		1	109	32-152	10/11/2023 1925
1,1-Dichloroethane	50	52		1	103	77-125	10/11/2023 1925
1,2-Dichloroethane	50	55		1	110	73-128	10/11/2023 1925
1,1-Dichloroethene	50	52		1	104	71-131	10/11/2023 1925
cis-1,2-Dichloroethene	50	49		1	98	78-123	10/11/2023 1925
trans-1,2-Dichloroethene	50	51		1	101	75-124	10/11/2023 1925
1,2-Dichloropropane	50	51		1	102	78-122	10/11/2023 1925
cis-1,3-Dichloropropene	50	51		1	102	75-124	10/11/2023 1925
trans-1,3-Dichloropropene	50	43		1	87	73-127	10/11/2023 1925
Ethylbenzene	50	51		1	101	79-121	10/11/2023 1925
2-Hexanone	100	120		1	123	57-139	10/11/2023 1925
Isopropylbenzene	50	51		1	103	72-131	10/11/2023 1925
Methyl acetate	50	49		1	99	56-136	10/11/2023 1925
Methyl tertiary butyl ether (MTBE)	50 50	48		1	97	71-124	10/11/2023 1925
4-Methyl-2-pentanone	100	110		1	114	67-130	10/11/2023 1925
	50	51		1	101	72-132	10/11/2023 1925
Methylcyclohexane							
Methylene chloride	50 50	48		1	95	74-124	10/11/2023 1925
Naphthalene	50	41		1	81	61-128	10/11/2023 1925
Styrene	50	51		1	101	78-123	10/11/2023 1925
1,1,2,2-Tetrachloroethane	50 50	52 50		1	103	71-121	10/11/2023 1925
Tetrachloroethene	50	50		1	99	74-129	10/11/2023 1925
	50	51		1	102	80-121	10/11/2023 1925
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	53		1	107	70-136	10/11/2023 1925
1,2,4-Trichlorobenzene	50	39		1	78	69-130	10/11/2023 1925
1,1,1-Trichloroethane	50	55		1	109	74-131	10/11/2023 1925

LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria
DL = Detection Limit	J = Estimated result < LOQ and \geq DL	P = The RPD between two GC columns exceeds 40%
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87138-0 Batch: 87138 Analytical Method: 8260D	02	2 Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date				
1,1,2-Trichloroethane	50	52		1	104	80-119	10/11/2023 1925				
Trichloroethene	50	49		1	98	79-123	10/11/2023 1925				
Trichlorofluoromethane	50	56		1	112	65-141	10/11/2023 1925				
Vinyl chloride	50	57		1	115	58-137	10/11/2023 1925				
Xylenes (total)	100	100		1	102	79-121	10/11/2023 1925				
Surrogate	Q% Rec	Accepta Limit									
1,2-Dichloroethane-d4	99	81-11	8								
Bromofluorobenzene	96	85-11	4								
Toluene-d8	94	89-11	2								
Dibromofluoromethane	92	80-11	9								

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% DL = Detection Limit J = Estimated result < LOQ and \ge DL LOD = Limit of Detection * = RSD is out of criteria + = RPD is out of criteria

Sample ID: YQ87138-003 Batch: 87138

Analytical Method: 8260D

Matrix: Aqueous

Prep Method: 5030B

	Spike						0/ P		
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Acetone	100	57	+	1	57	26	39-160	20	10/11/2023 1950
Benzene	50	52		1	103	1.6	79-120	20	10/11/2023 1950
Bromodichloromethane	50	51		1	103	1.2	79-125	20	10/11/2023 1950
Bromoform	50	40		1	80	5.6	66-130	20	10/11/2023 1950
Bromomethane (Methyl bromide)	50	51		1	101	0.50	53-141	20	10/11/2023 1950
2-Butanone (MEK)	100	110		1	107	5.4	56-143	20	10/11/2023 1950
Carbon disulfide	50	52		1	104	3.4	64-133	20	10/11/2023 1950
Carbon tetrachloride	50	54		1	107	0.28	72-136	20	10/11/2023 1950
Chlorobenzene	50	50		1	101	0.78	82-118	20	10/11/2023 1950
Chloroethane	50	51		1	101	0.082	60-138	20	10/11/2023 1950
Chloroform	50	51		1	103	0.63	79-124	20	10/11/2023 1950
Chloromethane (Methyl chloride)	50	54		1	108	2.9	50-139	20	10/11/2023 1950
Cyclohexane	50	53		1	106	0.47	71-130	20	10/11/2023 1950
1,2-Dibromo-3-chloropropane (DBCP)	50	48		1	96	7.6	62-128	20	10/11/2023 1950
Dibromochloromethane	50	52		1	103	4.3	74-126	20	10/11/2023 1950
1,2-Dibromoethane (EDB)	50	53		1	107	0.94	77-121	20	10/11/2023 195
1,2-Dichlorobenzene	50	49		1	97	2.0	80-119	20	10/11/2023 195
1,3-Dichlorobenzene	50	50		1	100	3.2	80-119	20	10/11/2023 195
1,4-Dichlorobenzene	50	50		1	99	3.1	79-118	20	10/11/2023 195
Dichlorodifluoromethane	50	55		1	111	1.4	32-152	20	10/11/2023 195
1,1-Dichloroethane	50	51		1	102	1.1	77-125	20	10/11/2023 195
1,2-Dichloroethane	50	55		1	110	0.090	73-128	20	10/11/2023 1950
1,1-Dichloroethene	50	53		1	106	1.5	71-131	20	10/11/2023 195
cis-1,2-Dichloroethene	50	50		1	99	1.1	78-123	20	10/11/2023 1950
trans-1,2-Dichloroethene	50	51		1	102	0.90	75-124	20	10/11/2023 1950
1,2-Dichloropropane	50	52		1	103	1.1	78-122	20	10/11/2023 1950
cis-1,3-Dichloropropene	50	54		1	108	5.6	75-124	20	10/11/2023 1950
rans-1,3-Dichloropropene	50	47		1	93	7.5	73-127	20	10/11/2023 1950
Ethylbenzene	50	51		1	103	1.6	79-121	20	10/11/2023 1950
2-Hexanone	100	130		1	126	2.5	57-139	20	10/11/2023 1950
lsopropylbenzene	50	50		1	100	3.3	72-131	20	10/11/2023 1950
Methyl acetate	50	45		1	91	8.6	56-136	20	10/11/2023 1950
Methyl tertiary butyl ether (MTBE)	50	48		1	95	1.4	71-124	20	10/11/2023 1950
4-Methyl-2-pentanone	100	110		1	111	2.8	67-130	20	10/11/2023 1950
Methylcyclohexane	50	52		1	104	2.9	72-132	20	10/11/2023 1950
Methylene chloride	50	46		1	93	2.8	74-124	20	10/11/2023 195
Naphthalene	50	44		1	89	9.1	61-128	20	10/11/2023 1950
Styrene	50	51		1	102	1.0	78-123	20	10/11/2023 1950
1,1,2,2-Tetrachloroethane	50	54		1	107	3.8	71-121	20	10/11/2023 1950
Tetrachloroethene	50	52		1	103	3.8	74-129	20	10/11/2023 1950
Toluene	50	53		1	105	3.4	80-121	20	10/11/2023 1950
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	55		1	110	2.5	70-136	20	10/11/2023 1950
1,2,4-Trichlorobenzene	50	39		1	78	0.24	69-130	20	10/11/2023 1950
1,1,1-Trichloroethane	50	55		1	110	1.3	74-131	20	10/11/2023 1950

LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria
DL = Detection Limit	J = Estimated result < LOQ and \geq DL	P = The RPD between two GC columns exceeds 40%
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87138-003 Batch: 87138 Analytical Method: 8260D	8-003 Matrix: Aqueous Prep Method: 5030B									
Parameter	Spil Amo (ug/	unt	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
1,1,2-Trichloroethane	50		54		1	107	3.1	80-119	20	10/11/2023 1950
Trichloroethene	50		50		1	100	2.2	79-123	20	10/11/2023 1950
Trichlorofluoromethane	50		56		1	113	0.43	65-141	20	10/11/2023 1950
Vinyl chloride	50		58		1	116	0.45	58-137	20	10/11/2023 1950
Xylenes (total)	100		100		1	101	0.95	79-121	20	10/11/2023 1950
Surrogate	Q	% Rec	Ac	ceptance Limit						
1,2-Dichloroethane-d4		97		81-118						
Bromofluorobenzene		95		85-114						
Toluene-d8		96		89-112						
Dibromofluoromethane		92		80-119						

Sample ID: YQ87165-001 Batch: 87165 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Acetone	10	U	1	20	10	5.0	ug/L	10/11/2023 1143
Benzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Bromodichloromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Bromoform	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Bromomethane (Methyl bromide)	0.80	U	1	2.0	0.80	0.40	ug/L	10/11/2023 1143
2-Butanone (MEK)	4.0	U	1	10	4.0	2.0	ug/L	10/11/2023 1143
Carbon disulfide	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Carbon tetrachloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Chlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Chloroethane	0.80	U	1	2.0	0.80	0.40	ug/L	10/11/2023 1143
Chloroform	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Chloromethane (Methyl chloride)	1.0	U	1	2.0	1.0	0.50	ug/L	10/11/2023 1143
Cyclohexane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,2-Dibromo-3-chloropropane (DBCP)	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Dibromochloromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,2-Dibromoethane (EDB)	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,2-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,3-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,4-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Dichlorodifluoromethane	1.2	U	1	2.0	1.2	0.60	ug/L	10/11/2023 1143
1,1-Dichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,2-Dichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,1-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
cis-1,2-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
trans-1,2-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,2-Dichloropropane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
cis-1,3-Dichloropropene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
trans-1,3-Dichloropropene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Ethylbenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
2-Hexanone	4.0	U	1	10	4.0	2.0	ug/L	10/11/2023 1143
Isopropylbenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Methyl acetate	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Methyl tertiary butyl ether (MTBE)	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
4-Methyl-2-pentanone	4.0	U	1	10	4.0	2.0	ug/L	10/11/2023 1143
Methylcyclohexane	0.80	U	1	5.0	0.80	0.40	ug/L	10/11/2023 1143
Methylene chloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Naphthalene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Styrene	0.82	U	1	1.0	0.82	0.41	ug/L	10/11/2023 1143
1,1,2,2-Tetrachloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Tetrachloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Toluene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.84	U	1	1.0	0.84	0.42	ug/L	10/11/2023 1143
1,2,4-Trichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
1,1,1-Trichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143

LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria
DL = Detection Limit	$J = Estimated result < LOQ and \ge DL$	P = The RPD between two GC columns exceeds 40%
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87165-001
Batch: 87165
Analytical Method: 8260D

Matrix: Aqueous

Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
1,1,2-Trichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Trichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Trichlorofluoromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Vinyl chloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Xylenes (total)	0.80	U	1	1.0	0.80	0.40	ug/L	10/11/2023 1143
Surrogate	Q % F	lec	Accep Lim					
1,2-Dichloroethane-d4	11	2	81-	118				
Bromofluorobenzene	94	Ļ	85-	114				
Toluene-d8	10	1	89-	112				
Dibromofluoromethane	11	2	80-	119				

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% + = RPD is out of criteria LOD = Limit of Detection * = RSD is out of criteria

Sample ID: YQ87165-002 Batch: 87165 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

	Spike						
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Acetone	100	110	M-03	1	113	39-160	10/11/2023 1033
Benzene	50	46	101-05	1	91	79-120	10/11/2023 1033
Bromodichloromethane	50 50	40		1	94	79-125	10/11/2023 1033
Bromoform	50 50	47		1	94 97	66-130	10/11/2023 1033
	50 50	40 46				53-141	
Bromomethane (Methyl bromide)				1	92		10/11/2023 1033
-Butanone (MEK)	100	95		1	95	56-143	10/11/2023 1033
Carbon disulfide	50 50	45 46		1 1	89 92	64-133	10/11/2023 1033
Carbon tetrachloride						72-136	10/11/2023 1033
Chlorobenzene	50	46		1	93	82-118	10/11/2023 1033
chloroethane	50	43		1	85	60-138	10/11/2023 1033
Chloroform	50	43		1	85	79-124	10/11/2023 1033
chloromethane (Methyl chloride)	50	43		1	87	50-139	10/11/2023 1033
Cyclohexane	50	42		1	85	71-130	10/11/2023 1033
,2-Dibromo-3-chloropropane (DBCP)	50	49		1	98	62-128	10/11/2023 1033
bibromochloromethane	50	50		1	101	74-126	10/11/2023 1033
,2-Dibromoethane (EDB)	50	50		1	101	77-121	10/11/2023 1033
2-Dichlorobenzene	50	47		1	94	80-119	10/11/2023 1033
,3-Dichlorobenzene	50	47		1	95	80-119	10/11/2023 1033
4-Dichlorobenzene	50	45		1	91	79-118	10/11/2023 1033
ichlorodifluoromethane	50	45	M-03	1	89	32-152	10/11/2023 1033
1-Dichloroethane	50	42		1	85	77-125	10/11/2023 1033
2-Dichloroethane	50	46		1	93	73-128	10/11/2023 1033
,1-Dichloroethene	50	44		1	89	71-131	10/11/2023 1033
is-1,2-Dichloroethene	50	43		1	85	78-123	10/11/2023 1033
ans-1,2-Dichloroethene	50	44		1	88	75-124	10/11/2023 1033
,2-Dichloropropane	50	45		1	91	78-122	10/11/2023 1033
is-1,3-Dichloropropene	50	49		1	98	75-124	10/11/2023 1033
ans-1,3-Dichloropropene	50	50		1	100	73-127	10/11/2023 1033
thylbenzene	50	48		1	96	79-121	10/11/2023 1033
-Hexanone	100	100		1	100	57-139	10/11/2023 1033
opropylbenzene	50	50		1	100	72-131	10/11/2023 1033
lethyl acetate	50	47	M-03	1	94	56-136	10/11/2023 1033
lethyl tertiary butyl ether (MTBE)	50	46		1	92	71-124	10/11/2023 1033
-Methyl-2-pentanone	100	96		1	96	67-130	10/11/2023 1033
lethylcyclohexane	50	30 46		1	92	72-132	10/11/2023 1033
lethylene chloride	50 50	40 45		1	92 89	72-132	10/11/2023 1033
aphthalene	50 50	43 52		1	89 103	61-128	10/11/2023 1033
•							
tyrene	50	49		1	98	78-123	10/11/2023 1033
1,2,2-Tetrachloroethane	50	46		1	91	71-121	10/11/2023 1033
etrachloroethene	50	49		1	98	74-129	10/11/2023 1033
	50	48		1	96	80-121	10/11/2023 1033
,1,2-Trichloro-1,2,2-Trifluoroethane	50	45		1	90	70-136	10/11/2023 1033
,2,4-Trichlorobenzene	50	48		1	96	69-130	10/11/2023 1033
,1,1-Trichloroethane	50	45		1	91	74-131	10/11/2023 1033

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87165-0 Batch: 87165 Analytical Method: 8260D	02	Matrix: Aqueous Prep Method: 5030B								
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date			
1,1,2-Trichloroethane	50	47		1	94	80-119	10/11/2023 1033			
Trichloroethene	50	46		1	92	79-123	10/11/2023 1033			
Trichlorofluoromethane	50	49	M-03	1	99	65-141	10/11/2023 1033			
Vinyl chloride	50	44		1	89	58-137	10/11/2023 1033			
Xylenes (total)	100	98		1	98	79-121	10/11/2023 1033			
Surrogate	Q% Rec	Accepta Limit								
1,2-Dichloroethane-d4	97	81-11	18							
Bromofluorobenzene	102	85-11	14							
Toluene-d8	99	89-11	12							
Dibromofluoromethane	95	80-11	19							

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% DL = Detection Limit J = Estimated result < LOQ and \ge DL LOD = Limit of Detection * = RSD is out of criteria + = RPD is out of criteria

Sample ID: YQ87294-001 Batch: 87294 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

Acetone 10 U 1 20 10 Benzene 0.80 U 1 1.0 0.80 Bromodichloromethane 0.80 U 1 1.0 0.80 Bromoform 0.80 U 1 1.0 0.80 Bromomethane (Methyl bromide) 0.80 U 1 1.0 0.80 2-Butanone (MEK) 4.0 U 1 1.0 4.0 Carbon disulfide 0.80 U 1 1.0 0.80 Carbon tetrachloride 0.80 U 1 1.0 0.80 Chlorobenzene 0.80 U 1 1.0 0.80 Chloroethane 0.80 U 1 1.0 0.80	5.0 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207 2.0 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207
Bromodichloromethane 0.80 U 1 1.0 0.80 Bromoform 0.80 U 1 1.0 0.80 Bromomethane (Methyl bromide) 0.80 U 1 2.0 0.80 2-Butanone (MEK) 4.0 U 1 10 4.0 Carbon disulfide 0.80 U 1 1.0 0.80 Carbon tetrachloride 0.80 U 1 1.0 0.80 Chlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207 2.0 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207
Bromoform 0.80 U 1 1.0 0.80 Bromomethane (Methyl bromide) 0.80 U 1 2.0 0.80 2-Butanone (MEK) 4.0 U 1 10 4.0 Carbon disulfide 0.80 U 1 1.0 0.80 Carbon tetrachloride 0.80 U 1 1.0 0.80 Chlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207 2.0 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207
Bromomethane (Methyl bromide) 0.80 U 1 2.0 0.80 2-Butanone (MEK) 4.0 U 1 10 4.0 Carbon disulfide 0.80 U 1 1.0 0.80 Carbon tetrachloride 0.80 U 1 1.0 0.80 Chlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207 2.0 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207
2-Butanone (MEK) 4.0 U 1 10 4.0 Carbon disulfide 0.80 U 1 1.0 0.80 Carbon tetrachloride 0.80 U 1 1.0 0.80 Chlorobenzene 0.80 U 1 1.0 0.80	2.0 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207
Carbon disulfide 0.80 U 1 1.0 0.80 Carbon tetrachloride 0.80 U 1 1.0 0.80 Chlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207
Carbon tetrachloride 0.80 U 1 1.0 0.80 Chlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207 0.40 ug/L 10/12/2023 2207
Chlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Chloroethane 0.80 U 1 2.0 0.80	0.40 ug/L 10/12/2023 2207
Chloroform 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Chloromethane (Methyl chloride) 1.0 U 1 2.0 1.0	0.50 ug/L 10/12/2023 2207
Cyclohexane 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,2-Dibromo-3-chloropropane (DBCP) 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Dibromochloromethane 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,2-Dibromoethane (EDB) 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,2-Dichlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,3-Dichlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,4-Dichlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Dichlorodifluoromethane 1.2 U 1 2.0 1.2	0.60 ug/L 10/12/2023 2207
1,1-Dichloroethane 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,2-Dichloroethane 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,1-Dichloroethene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
cis-1,2-Dichloroethene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
trans-1,2-Dichloroethene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,2-Dichloropropane 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
cis-1,3-Dichloropropene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
trans-1,3-Dichloropropene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Ethylbenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
2-Hexanone 4.0 U 1 10 4.0	2.0 ug/L 10/12/2023 2207
Isopropylbenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Methyl acetate 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Methyl tertiary butyl ether (MTBE) 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
4-Methyl-2-pentanone 4.0 U 1 10 4.0	2.0 ug/L 10/12/2023 2207
Methylcyclohexane 0.80 U 1 5.0 0.80	0.40 ug/L 10/12/2023 2207
Methylene chloride 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Naphthalene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Styrene 0.82 U 1 1.0 0.82	0.41 ug/L 10/12/2023 2207
1,1,2,2-Tetrachloroethane 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Tetrachloroethene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
Toluene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,1,2-Trichloro-1,2,2-Trifluoroethane 0.84 U 1 1.0 0.84	0.42 ug/L 10/12/2023 2207
1,2,4-Trichlorobenzene 0.80 U 1 1.0 0.80	0.40 ug/L 10/12/2023 2207
1,1,1-Trichloroethane 0.80 U 1 1.0 0.80	-

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87294-001
Batch: 87294
Analytical Method: 8260D

Matrix: Aqueous

Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
1,1,2-Trichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/12/2023 2207
Trichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/12/2023 2207
Trichlorofluoromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/12/2023 2207
Vinyl chloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/12/2023 2207
Xylenes (total)	0.80	U	1	1.0	0.80	0.40	ug/L	10/12/2023 2207
Surrogate	Q %	Rec	Accep Lim					
1,2-Dichloroethane-d4	1	07	81-	118				
Bromofluorobenzene		92	85-	114				
Toluene-d8	1	11	89-	112				
Dibromofluoromethane	1	09	80-	119				

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

 Note:
 Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Sample ID: YQ87294-002 Batch: 87294 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

	Spike						
Parameter	Amount	Result	Q	L.	% Rec	%Rec Limit	Analysis Data
	(ug/L)	(ug/L)	4	Dil			Analysis Date
cetone	100	110		1	105	39-160	10/12/2023 2052
Senzene	50	50		1	100	79-120	10/12/2023 2052
Bromodichloromethane	50	55		1	110	79-125	10/12/2023 2052
Bromoform	50	52		1	104	66-130	10/12/2023 2052
Bromomethane (Methyl bromide)	50	57		1	113	53-141	10/12/2023 2052
-Butanone (MEK)	100	98		1	98	56-143	10/12/2023 2052
Carbon disulfide	50	51		1	101	64-133	10/12/2023 2052
Carbon tetrachloride	50	50		1	99	72-136	10/12/2023 2052
Chlorobenzene	50	51		1	102	82-118	10/12/2023 2052
hloroethane	50	50		1	100	60-138	10/12/2023 2052
hloroform	50	47		1	93	79-124	10/12/2023 2052
hloromethane (Methyl chloride)	50	49		1	98	50-139	10/12/2023 2052
yclohexane	50	45		1	90	71-130	10/12/2023 2052
,2-Dibromo-3-chloropropane (DBCP)	50	48		1	96	62-128	10/12/2023 2052
bibromochloromethane	50	54		1	107	74-126	10/12/2023 2052
,2-Dibromoethane (EDB)	50	56		1	111	77-121	10/12/2023 2052
2-Dichlorobenzene	50	51		1	101	80-119	10/12/2023 2052
3-Dichlorobenzene	50	51		1	102	80-119	10/12/2023 2052
4-Dichlorobenzene	50	50		1	100	79-118	10/12/2023 2052
ichlorodifluoromethane	50	46		1	92	32-152	10/12/2023 2052
1-Dichloroethane	50	45		1	89	77-125	10/12/2023 2052
2-Dichloroethane	50	51		1	102	73-128	10/12/2023 2052
1-Dichloroethene	50	53		1	106	71-131	10/12/2023 2052
s-1,2-Dichloroethene	50	46		1	93	78-123	10/12/2023 2052
ans-1,2-Dichloroethene	50	51		1	103	75-124	10/12/2023 2052
,2-Dichloropropane	50	49		1	98	78-122	10/12/2023 2052
s-1,3-Dichloropropene	50	60		1	121	75-124	10/12/2023 2052
ans-1,3-Dichloropropene	50	57		1	113	73-127	10/12/2023 2052
thylbenzene	50	54		1	108	79-121	10/12/2023 2052
-Hexanone	100	100		1	104	57-139	10/12/2023 2052
opropylbenzene	50	56		1	112	72-131	10/12/2023 2052
lethyl acetate	50	52		1	105	56-136	10/12/2023 2052
lethyl tertiary butyl ether (MTBE)	50	52		1	105	71-124	10/12/2023 2052
-Methyl-2-pentanone	100	120		1	118	67-130	10/12/2023 2052
lethylcyclohexane	50	51		1	101	72-132	10/12/2023 2052
lethylene chloride	50	50		1	100	74-124	10/12/2023 2052
aphthalene	50	53		1	106	61-128	10/12/2023 2052
tyrene	50	55		1	111	78-123	10/12/2023 2052
1,2,2-Tetrachloroethane	50	49		1	98	71-121	10/12/2023 2052
etrachloroethene	50	56		1	113	74-129	10/12/2023 2052
oluene	50	60		1	120	80-121	10/12/2023 2052
1,2-Trichloro-1,2,2-Trifluoroethane	50	53		1	107	70-136	10/12/2023 2052
,2,4-Trichlorobenzene	50	48		1	95	69-130	10/12/2023 2052
,_,	~~			•			

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87294-0 Batch: 87294 Analytical Method: 8260D	02	Matrix: Aqueous Prep Method: 5030B										
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date					
1,1,2-Trichloroethane	50	56		1	112	80-119	10/12/2023 2052					
Trichloroethene	50	50		1	101	79-123	10/12/2023 2052					
Trichlorofluoromethane	50	55		1	111	65-141	10/12/2023 2052					
Vinyl chloride	50	52		1	103	58-137	10/12/2023 2052					
Xylenes (total)	100	110		1	107	79-121	10/12/2023 2052					
Surrogate	Q% Rec	Accepta Limit										
1,2-Dichloroethane-d4	93	81-11	8									
Bromofluorobenzene	98	85-11	4									
Toluene-d8	110	89-11	2									
Dibromofluoromethane	92	80-11	9									

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% DL = Detection Limit J = Estimated result < LOQ and \ge DL LOD = Limit of Detection * = RSD is out of criteria + = RPD is out of criteria

Sample ID: YQ87294-003 Batch: 87294 Matrix: Aqueous

Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Acetone	100	98	-	1	98	7.5	39-160	20	10/12/2023 2117
Benzene	50	98 49		1	98 98	2.3	79-120	20	10/12/2023 2117
Bromodichloromethane	50 50	49 52		1	90 103	2.3 6.5	79-120	20	10/12/2023 2117
Bromoform	50 50	52 54		1	103	0.5 3.2	66-130	20	10/12/2023 2117
Bromomethane (Methyl bromide)	50 50	54 51		1	107	3.2 9.6	53-141	20	10/12/2023 2117
2-Butanone (MEK)	30 100	99		1	99		56-143		10/12/2023 2117
		99 47				1.4	64-133	20	10/12/2023 2117
Carbon disulfide Carbon tetrachloride	50 50	47 50		1 1	93 99	8.2 0.051	64-133 72-136	20 20	10/12/2023 2117
Chlorobenzene	50 50	50 51		1	103	0.54	82-118	20	10/12/2023 2117
Chloroethane	50 50	44		1	89	12	60-138	20	10/12/2023 2117
Chloroform	50 50	44		1	93	0.14	79-124	20 20	10/12/2023 2117
	50 50	47		1	93 95	3.1	50-139	20	10/12/2023 2117
Chloromethane (Methyl chloride)							71-130		
Cyclohexane	50 50	45 50		1	89 101	1.3	62-128	20 20	10/12/2023 2117
I,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane	50 50	50 55		1	101	5.1 2.2	62-128 74-126	20 20	10/12/2023 2117 10/12/2023 2117
I,2-Dibromoethane (EDB)	50 50	55 55		1 1	110	2.2 0.49	74-126 77-121	20	10/12/2023 2117
I.2-Dichlorobenzene	50 50	55 51		1	102	0.49	80-119	20	10/12/2023 2117
1,3-Dichlorobenzene	50 50	52		1	102	0.45 2.2	80-119 80-119	20	10/12/2023 2117
I,4-Dichlorobenzene	50 50	52 50		1	104	1.2	79-118	20	10/12/2023 2117
Dichlorodifluoromethane	50 50	50 47		1	93	1.2	32-152	20	10/12/2023 2117
I,1-Dichloroethane	50 50	47 41		1	93 82	1.5 8.6	77-125	20	10/12/2023 2117
	50 50					8.6 3.7			
,2-Dichloroethane	50 50	49		1	98 95		73-128	20	10/12/2023 2117 10/12/2023 2117
I,1-Dichloroethene sis-1,2-Dichloroethene	50 50	48 47		1 1	95 94	11 0.90	71-131 78-123	20 20	10/12/2023 2117
rans-1,2-Dichloroethene	50 50	47		1	94 88	16	75-123	20	10/12/2023 2117
1,2-Dichloropropane	50 50	44		1	96	2.6	78-124	20	10/12/2023 2117
sis-1,3-Dichloropropene	50 50	40 52		1	90 105	2.0 14	75-122	20	10/12/2023 2117
rans-1,3-Dichloropropene	50 50	52 53		1	103	6.1	73-124	20	10/12/2023 2117
Ethylbenzene	50 50	53 54		1	107	0.44	79-121	20	10/12/2023 2117
2-Hexanone	30 100	54 110			108	0.44 2.7	57-139	20	10/12/2023 2117
	50	56		1	107	0.060	72-139	20	10/12/2023 2117
sopropylbenzene	50 50	50 48		1	96	8.8	56-136	20	10/12/2023 2117
Methyl acetate				1	90 90				
Methyl tertiary butyl ether (MTBE)	50 100	45 100		1		16 16	71-124	20	10/12/2023 2117
4-Methyl-2-pentanone	100	100		1	101	16	67-130	20	10/12/2023 2117
Methylcyclohexane	50	49		1	97	4.2	72-132	20	10/12/2023 2117
Methylene chloride	50	43		1	86	15	74-124	20	10/12/2023 2117
Naphthalene	50	62		1	123	15	61-128	20	10/12/2023 2117
	50	55		1	111	0.095	78-123	20	10/12/2023 2117
,1,2,2-Tetrachloroethane	50 50	49 53		1	98 107	0.76	71-121	20 20	10/12/2023 2117
Fetrachloroethene	50	53 57		1	107	5.4	74-129	20	10/12/2023 2117
Foluene	50	57		1	113	5.6	80-121	20	10/12/2023 2117
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	48		1	95 101	11	70-136	20	10/12/2023 2117
1,2,4-Trichlorobenzene	50	51		1	101	6.4	69-130	20	10/12/2023 2117
1,1,1-Trichloroethane	50	49		1	97	0.89	74-131	20	10/12/2023 2117

LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria
DL = Detection Limit	J = Estimated result < LOQ and \ge DL	P = The RPD between two GC columns exceeds 40%
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ87294-003 Batch: 87294 Analytical Method: 8260D	Batch: 87294 Prep Method: 5030B										
Parameter	Spil Amo (ug/	unt	Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date	
1,1,2-Trichloroethane	50		51		1	103	8.7	80-119	20	10/12/2023 2117	
Trichloroethene	50		51		1	102	1.0	79-123	20	10/12/2023 2117	
Trichlorofluoromethane	50		49	M-03	1	98	12	65-141	20	10/12/2023 2117	
Vinyl chloride	50		49		1	97	5.9	58-137	20	10/12/2023 2117	
Xylenes (total)	100		110		1	109	0.95	79-121	20	10/12/2023 2117	
Surrogate	Q	% Rec	Ac	ceptance Limit							
1,2-Dichloroethane-d4		95		81-118							
Bromofluorobenzene		102		85-114							
Toluene-d8		110		89-112							
Dibromofluoromethane		97		80-119							

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

Sample ID: YQ88182-001 Batch: 88182 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Acetone	10	U	1	20	10	5.0	ug/L	10/23/2023 1204
Benzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Bromodichloromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Bromoform	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Bromomethane (Methyl bromide)	0.80	U	1	2.0	0.80	0.40	ug/L	10/23/2023 1204
2-Butanone (MEK)	4.0	U	1	10	4.0	2.0	ug/L	10/23/2023 1204
Carbon disulfide	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Carbon tetrachloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Chlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Chloroethane	0.80	U	1	2.0	0.80	0.40	ug/L	10/23/2023 1204
Chloroform	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Chloromethane (Methyl chloride)	1.0	U	1	2.0	1.0	0.50	ug/L	10/23/2023 1204
Cyclohexane	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
1,2-Dibromo-3-chloropropane (DBCP)	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Dibromochloromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
1,2-Dibromoethane (EDB)	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
1,2-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
1,3-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
1,4-Dichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Dichlorodifluoromethane	1.2	U	1	2.0	1.2	0.60	ug/L	10/23/2023 1204
1,1-Dichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
1,2-Dichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
1,1-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
cis-1,2-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
trans-1,2-Dichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
1,2-Dichloropropane	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
cis-1,3-Dichloropropene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
trans-1,3-Dichloropropene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Ethylbenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
2-Hexanone	4.0	U	1	10	4.0	2.0	ug/L	10/23/2023 1204
Isopropylbenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Methyl acetate	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Methyl tertiary butyl ether (MTBE)	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
4-Methyl-2-pentanone	4.0	U	1	10	4.0	2.0	ug/L	10/23/2023 1204
Methylcyclohexane	0.80	U	1	5.0	0.80	0.40	ug/L	10/23/2023 1204
Methylene chloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Naphthalene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Styrene	0.82	U	1	1.0	0.82	0.41	ug/L	10/23/2023 1204
1,1,2,2-Tetrachloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Tetrachloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Toluene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.84	U	1	1.0	0.84	0.42	ug/L	10/23/2023 1204
1,2,4-Trichlorobenzene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ88182-001 Batch: 88182 Analytical Method: 8260D

Matrix: Aqueous

Prep Method: 5030B

Parameter	Result	t Q	Dil	LOQ	LOD	DL	Units	Analysis Date
1,1,2-Trichloroethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Trichloroethene	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Trichlorofluoromethane	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Vinyl chloride	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Xylenes (total)	0.80	U	1	1.0	0.80	0.40	ug/L	10/23/2023 1204
Surrogate	Q	% Rec	Accept Lim					
1,2-Dichloroethane-d4	N	124	81-1	118				
Bromofluorobenzene		98	85-	114				
Toluene-d8		109	89-7	112				
Dibromofluoromethane		116	80-	119				

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL P = The RPD between two GC columns exceeds 40% + = RPD is out of criteria LOD = Limit of Detection * = RSD is out of criteria

Sample ID: YQ88182-002 Batch: 88182

Analytical Method: 8260D

Matrix: Aqueous

Prep Method: 5030B

	Spike						
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Acetone	100	110		1	106	39-160	10/23/2023 0901
Benzene	50	54		1	108	79-120	10/23/2023 090
	50 50	54 57			114	79-120	
Bromodichloromethane				1			10/23/2023 0901
Bromoform	50	46		1	91	66-130	10/23/2023 090
Bromomethane (Methyl bromide)	50	53		1	107	53-141	10/23/2023 0901
-Butanone (MEK)	100	130		1	127	56-143	10/23/2023 0901
Carbon disulfide	50	63		1	126	64-133	10/23/2023 0901
Carbon tetrachloride	50	59		1	118	72-136	10/23/2023 0901
chlorobenzene	50	51		1	102	82-118	10/23/2023 0901
Chloroethane	50	54		1	107	60-138	10/23/2023 090
Chloroform	50	57		1	113	79-124	10/23/2023 0901
Chloromethane (Methyl chloride)	50	59		1	119	50-139	10/23/2023 0901
Cyclohexane	50	58		1	117	71-130	10/23/2023 0901
,2-Dibromo-3-chloropropane (DBCP)	50	50		1	101	62-128	10/23/2023 0901
ibromochloromethane	50	57		1	114	74-126	10/23/2023 0901
,2-Dibromoethane (EDB)	50	55		1	110	77-121	10/23/2023 090
,2-Dichlorobenzene	50	47		1	95	80-119	10/23/2023 0901
,3-Dichlorobenzene	50	49		1	98	80-119	10/23/2023 0901
,4-Dichlorobenzene	50	49		1	98	79-118	10/23/2023 0901
ichlorodifluoromethane	50	62		1	124	32-152	10/23/2023 0901
,1-Dichloroethane	50	55		1	110	77-125	10/23/2023 0901
,2-Dichloroethane	50	61		1	122	73-128	10/23/2023 0901
,1-Dichloroethene	50	63		1	126	71-131	10/23/2023 0901
is-1,2-Dichloroethene	50	52		1	104	78-123	10/23/2023 0901
ans-1,2-Dichloroethene	50	55		1	109	75-124	10/23/2023 0901
,2-Dichloropropane	50	56		1	111	78-122	10/23/2023 0901
is-1,3-Dichloropropene	50	58		1	117	75-124	10/23/2023 0901
ans-1,3-Dichloropropene	50	53		1	106	73-127	10/23/2023 0901
thylbenzene	50 50	53		1	100	79-121	10/23/2023 0901
-Hexanone	100	120		1	107	57-139	10/23/2023 0901
				•			
sopropylbenzene	50	55		1	110	72-131	10/23/2023 0901
lethyl acetate	50	57		1	115	56-136	10/23/2023 0901
lethyl tertiary butyl ether (MTBE)	50	54		1	108	71-124	10/23/2023 0901
-Methyl-2-pentanone	100	120		1	116	67-130	10/23/2023 0901
lethylcyclohexane	50	56		1	112	72-132	10/23/2023 0901
lethylene chloride	50	53		1	107	74-124	10/23/2023 0901
aphthalene	50	38		1	75	61-128	10/23/2023 0902
tyrene	50	56		1	112	78-123	10/23/2023 0901
,1,2,2-Tetrachloroethane	50	53		1	106	71-121	10/23/2023 0901
etrachloroethene	50	52		1	104	74-129	10/23/2023 0901
oluene	50	54		1	108	80-121	10/23/2023 0901
,1,2-Trichloro-1,2,2-Trifluoroethane	50	55		1	110	70-136	10/23/2023 0901
,2,4-Trichlorobenzene	50	38		1	76	69-130	10/23/2023 0901
,1,1-Trichloroethane	50	60		1	121	74-131	10/23/2023 0901

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: YQ88182-0 Batch: 88182 Analytical Method: 8260D	02		Pr	Matrix: ep Method:	Aqueous 5030B		
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
1,1,2-Trichloroethane	50	54		1	108	80-119	10/23/2023 0901
Trichloroethene	50	53		1	106	79-123	10/23/2023 0901
Trichlorofluoromethane	50	62		1	125	65-141	10/23/2023 0901
Vinyl chloride	50	62		1	124	58-137	10/23/2023 0901
Xylenes (total)	100	110		1	106	79-121	10/23/2023 0901
Surrogate	Q% Rec	Accepta Limit					
1,2-Dichloroethane-d4	113	81-11	8				
Bromofluorobenzene	104	85-11	4				
Toluene-d8	104	89-11	2				
Dibromofluoromethane	104	80-11	9				

Semivolatile Organic Compounds by GC/MS (SIM) - MB								
Sample ID: YQ86383-001 Batch: 86383				Pre	Matrix: p Method:	Aqueous 3520C		
Analytical Method: 8270E (SIM)					Prep Date:	10/03/2023 1330		
Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Pentachlorophenol	0.10	U	1	1.0	0.10	0.028	ua/l	10/12/2023 1103

	Pentachlorophenol	0.10		U	1	1.0	0.10	0.0	028	ug/L	10/12/2023 1103
-	Surrogate	Q	% Rec		Accept Lim						
	Fluoranthene-d10		99		23-1	54					
	2-Methylnaphthalene-d10		83		15-1	39					

LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria					
DL = Detection Limit	J = Estimated result < LOQ and \geq DL	P = The RPD between two GC columns exceeds 40%					
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria					
Note: Calculations are performed before rounding to avoid round-off errors in calculated results							

Semivolatile Organic Compounds by GC/MS (SIM) - LCS

Sample ID: YQ86383-002 Batch: 86383		Matrix: Aqueous Prep Method: 3520C Prep Date: 10/03/2023 1330											
Analytical Method: 8270E (SIM) Parameter	Spil Amo (ug/	unt	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date					
Pentachlorophenol	2.0		2.7		1	134	36-141	10/12/2023 1128					
Surrogate	Q	% Rec	Accepta Limi										
Fluoranthene-d10		85	23-1	54									
2-Methylnaphthalene-d10		80	15-13	39									

Semivolatile Organic Compounds by GC/MS (SIM) - MS

Sample ID: YI30001-001MS Batch: 86383 Analytical Method: 8270E (SIM)					Prep Method				
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Pentachlorophenol	ND		4.0	7.7	Ν	1	192	36-141	10/12/2023 1958
Surrogate	Q	% Rec	Ac	ceptance Limit					
Fluoranthene-d10		92		23-154					
2-Methylnaphthalene-d10		87		15-139					

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% + = RPD is out of criteria LOD = Limit of Detection * = RSD is out of criteria

Semivolatile Organic Compounds by GC/MS (SIM) - MSD

Sample ID: YI30001-001MD Batch: 86383 Analytical Method: 8270E (SIM)					Pı	rep Meth	od:					
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	ſ	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Pentachlorophenol	ND		4.0	7.4	Ν		1	186	3.6	36-141	20	10/12/2023 2022
Surrogate	Q	% Rec	Ac	ceptance Limit								
Fluoranthene-d10		90		23-154								
2-Methylnaphthalene-d10		78		15-139								

LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria
DL = Detection Limit	J = Estimated result < LOQ and \ge DL	P = The RPD between two GC columns exceeds 40%
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria
Note: Calculations are performed before round	ling to avoid round-off errors in calculated	results

Semivolatile Organic Compounds by GC/MS (SIM) - MB

Sample ID: YQ86606-001	Matrix: Aqueous	
Batch: 86606	Prep Method: 3520C	
Analytical Method: 8270E (SIM)	Prep Date: 10/05/2023 17	134

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Naphthalene	0.060	U	1	0.20	0.060	0.030	ug/L	10/13/2023 1201
Pentachlorophenol	0.10	U	1	1.0	0.10	0.028	ug/L	10/13/2023 1201
Surrogate	Q % R	ec	Accep Lin					
Fluoranthene-d10	101	1	23-	154				
2-Methylnaphthalene-d10	83		15-	139				

LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria								
DL = Detection Limit	J = Estimated result < LOQ and \geq DL	P = The RPD between two GC columns exceeds 40%								
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria								
Note: Calculations are performed before rounding to avoid round-off errors in calculated results										

Semivolatile Organic Compounds by GC/MS (SIM) - LCS

Sample ID: YQ86606-002 Batch: 86606 Analytical Method: 8270E (SIM)		Matrix: Aqueous Prep Method: 3520C Prep Date: 10/05/2023 1134										
Parameter	Spil Amo (ug/	unt	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date				
Naphthalene	0.60		0.49		1	81	43-114	10/13/2023 1225				
Pentachlorophenol	2.0		2.7		1	136	36-141	10/13/2023 1225				
Surrogate	Q	% Rec	Accepta Limi									
Fluoranthene-d10		93	23-1	54								
2-Methylnaphthalene-d10		80	15-13	39								

 LOQ = Limit of Quantitation
 U = Not detected at or above the LOD
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 LOD = Limit of Detection
 * = RSD is out of criteria
 + = RPD is out of criteria

 Note: Calculations are performed before round-off errors in calculated results

Semivolatile Organic Compounds by GC/MS (SIM) - MS

Sample ID: YI30001-010MS Batch: 86606 Analytical Method: 8270E (SIM)				F	Prep Method					
Parameter	Amount A		Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date	
Pentachlorophenol	ND		2.0	4.2	Ν	1	216	36-141	10/13/2023 1539	
Surrogate	Q	% Rec		ceptance Limit						
Fluoranthene-d10		102		23-154						
2-Methylnaphthalene-d10		82		15-139						

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% + = RPD is out of criteria LOD = Limit of Detection * = RSD is out of criteria

Semivolatile Organic Compounds by GC/MS (SIM) - MSD

Sample ID: YI30001-010MD Batch: 86606 Analytical Method: 8270E (SIM)		Matrix: Aqueous Prep Method: 3520C Prep Date: 10/05/2023 1134											
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	[Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date	
Pentachlorophenol	ND		2.0	3.8	Ν	1	1	194	11	36-141	20	10/13/2023 1603	
Surrogate	Q	% Rec		ceptance Limit									
Fluoranthene-d10		94		23-154									
2-Methylnaphthalene-d10		75		15-139									

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% LOD = Limit of Detection * = RSD is out of criteria + = RPD is out of criteria

Semivolatile Organic Compounds by GC/MS (SIM) - MS

Sample ID: YI30001-011MS Batch: 86606 Analytical Method: 8270E (SIM)		Matrix: Aqueous Prep Method: 3520C Prep Date: 10/05/2023 1134											
Parameter	Sample Amount (ug/L)		Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date				
Pentachlorophenol	ND		1.9	3.8	Ν	1	193	36-141	10/13/2023 1652				
Surrogate	Q	% Rec		ceptance Limit									
Fluoranthene-d10		93		23-154									
2-Methylnaphthalene-d10		72		15-139									

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% + = RPD is out of criteria LOD = Limit of Detection * = RSD is out of criteria

Semivolatile Organic Compounds by GC/MS (SIM) - MSD

Sample ID: YI30001-011MD Batch: 86606 Analytical Method: 8270E (SIM)		Matrix: Aqueous Prep Method: 3520C Prep Date: 10/05/2023 1134											
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	ſ	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date	
Pentachlorophenol	ND		2.0	4.0	Ν	1	1	203	5.6	36-141	20	10/13/2023 1716	
Surrogate	Q	% Rec	Ac	ceptance Limit									
Fluoranthene-d10		97		23-154									
2-Methylnaphthalene-d10		77		15-139									

LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria
DL = Detection Limit	J = Estimated result < LOQ and \ge DL	P = The RPD between two GC columns exceeds 40%
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria
Note: Calculations are performed before roun	ding to avoid round-off errors in calculated	results

Organochlorine Pesticides by GC - MB

Batch: 86402 Prep Method: 3520C	
Analytical Method: 8081B Prep Date: 10/03/2023	1530

Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Aldrin	0.040	U	1	0.050	0.040	0.020	ug/L	10/04/2023 2130
gamma-BHC (Lindane)	0.040	U	1	0.050	0.040	0.017	ug/L	10/04/2023 2130
alpha-BHC	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
peta-BHC	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
delta-BHC	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
cis-Chlordane	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
rans-Chlordane	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
4,4'-DDD	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
4,4'-DDE	0.040	U	1	0.050	0.040	0.020	ug/L	10/04/2023 2130
4,4'-DDT	0.040	U	1	0.050	0.040	0.020	ug/L	10/04/2023 2130
Dieldrin	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
Endosulfan I	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
Endosulfan II	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
Endosulfan sulfate	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
Endrin	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
Endrin aldehyde	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
Endrin ketone	0.030	U	1	0.040	0.030	0.015	ug/L	10/04/2023 2130
Heptachlor	0.050	U	1	0.060	0.050	0.021	ug/L	10/04/2023 2130
Heptachlor epoxide	0.040	U	1	0.050	0.040	0.016	ug/L	10/04/2023 2130
Vethoxychlor	0.050	U	1	0.16	0.050	0.021	ug/L	10/04/2023 2130
Toxaphene	0.60	U	1	0.80	0.60	0.30	ug/L	10/04/2023 2130
Surrogate	Q % R	ec	Accep Lin					
Decachlorobiphenyl	42		20-	122				
Tetrachloro-m-xylene	93		44-	124				

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \geq DL P = The RPD between two GC columns exceeds 40% LOD = Limit of Detection * = RSD is out of criteria + = RPD is out of criteria	Note: Calculations are performed b	efore rounding to avoid round-off errors in cal	culated results
	LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria
LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria	DL = Detection Limit	J = Estimated result < LOQ and \ge DL	P = The RPD between two GC columns exceeds 40%
	LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria

Organochlorine Pesticides by GC - LCS

Sample ID: YQ86402-002 Batch: 86402 Analytical Method: 8081B				Method:	Aqueous 3520C 10/03/2023 153	30	
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Aldrin	0.80	0.72		1	89	45-134	10/04/2023 2146
gamma-BHC (Lindane)	0.80	0.78		1	97	59-134	10/04/2023 2146
alpha-BHC	0.80	0.79		1	98	54-138	10/04/2023 2146
beta-BHC	0.80	0.68		1	85	56-136	10/04/2023 2146
delta-BHC	0.80	0.76		1	96	52-142	10/04/2023 2146
cis-Chlordane	0.80	0.68		1	84	60-129	10/04/2023 2146
trans-Chlordane	0.80	0.69		1	86	56-136	10/04/2023 2146
4,4'-DDD	0.80	0.73		1	91	56-143	10/04/2023 2146
4,4'-DDE	0.80	0.64		1	81	57-135	10/04/2023 2146
4,4'-DDT	0.80	0.57		1	71	51-143	10/04/2023 2146
Dieldrin	0.80	0.76		1	95	60-136	10/04/2023 2146
Endosulfan I	0.80	0.69		1	87	62-126	10/04/2023 2146
Endosulfan II	0.80	0.69		1	86	52-135	10/04/2023 2146
Endosulfan sulfate	0.80	0.72		1	90	62-133	10/04/2023 2146
Endrin	0.80	0.60		1	75	60-138	10/04/2023 2146
Endrin aldehyde	0.80	0.72		1	90	51-132	10/04/2023 2146
Endrin ketone	0.80	0.81		1	102	58-134	10/04/2023 2146
Heptachlor	0.80	0.64		1	80	54-130	10/04/2023 2146
Heptachlor epoxide	0.80	0.70		1	87	61-133	10/04/2023 2146
Methoxychlor	0.80	0.60		1	75	54-145	10/04/2023 2146
Toxaphene	1.0	1.6	Ν	1	163	33-134	10/04/2023 2201
Surrogate	Q% Rec	Acceptane Limit	ce				
Decachlorobiphenyl	51	20-122					
Tetrachloro-m-xylene	93	44-124					

Note: Coloulations are performed before round	ding to avoid round off arrors in calculated	regulto
LOD = Limit of Detection	* = RSD is out of criteria	+ = RPD is out of criteria
DL = Detection Limit	J = Estimated result < LOQ and \geq DL	P = The RPD between two GC columns exceeds 40%
LOQ = Limit of Quantitation	U = Not detected at or above the LOD	N = Recovery is out of criteria

Organochlorine Pesticides by GC - MS

Sample ID: YI30001-001MS Batch: 86402 Analytical Method: 8081B			P	rep Metho	ix: Aqueou od: 3520C te: 10/03/2			
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Aldrin	ND	1.6	1.4		1	88	45-134	10/04/2023 2248
gamma-BHC (Lindane)	ND	1.6	1.4	Р	1	90	59-134	10/04/2023 2248
alpha-BHC	ND	1.6	1.6		1	97	54-138	10/04/2023 2248
peta-BHC	ND	1.6	1.3		1	84	56-136	10/04/2023 2248
delta-BHC	ND	1.6	1.5		1	97	52-142	10/04/2023 2248
cis-Chlordane	ND	1.6	1.3		1	83	60-129	10/04/2023 2248
rans-Chlordane	ND	1.6	1.4		1	86	56-136	10/04/2023 2248
4,4'-DDD	ND	1.6	1.5		1	91	56-143	10/04/2023 2248
4,4'-DDE	ND	1.6	1.3		1	81	57-135	10/04/2023 2248
4,4'-DDT	ND	1.6	1.2		1	78	51-143	10/04/2023 2248
Dieldrin	ND	1.6	1.5		1	93	60-136	10/04/2023 2248
Endosulfan I	ND	1.6	1.4		1	87	62-126	10/04/2023 2248
Endosulfan II	ND	1.6	1.4		1	87	52-135	10/04/2023 2248
Endosulfan sulfate	ND	1.6	1.4		1	90	62-133	10/04/2023 2248
Endrin	ND	1.6	1.2		1	73	60-138	10/04/2023 2248
Endrin aldehyde	ND	1.6	1.4		1	90	51-132	10/04/2023 2248
Endrin ketone	ND	1.6	1.6		1	103	58-134	10/04/2023 2248
Heptachlor	ND	1.6	1.3		1	80	54-130	10/04/2023 2248
Heptachlor epoxide	ND	1.6	1.4		1	86	61-133	10/04/2023 2248
Methoxychlor	ND	1.6	1.3		1	80	54-145	10/04/2023 2248
Surrogate	Q % Re		eptance Limit					
Decachlorobiphenyl	62		20-122					
Tetrachloro-m-xylene	91		44-124					

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and \ge DL DL = Detection Limit LOD = Limit of Detection * = RSD is out of criteria + = RPD is out of criteria

	0	rganochlo	orine Pe	estic	cides b	y GC	- MSD			
Sample ID: Y 30001-001MD Batch: 86402 Analytical Method: 8081B				Pr	ep Method)		
Parameter	Samp Amou (ug/L	int Amour	nt Result (ug/L)	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Aldrin	ND	1.6	1.4		1	88	0.050	45-134	30	10/04/2023 2303
gamma-BHC (Lindane)	ND	1.6	1.4	Р	1	90	0.076	59-134	30	10/04/2023 2303
alpha-BHC	ND	1.6	1.6		1	97	0.019	54-138	30	10/04/2023 2303
beta-BHC	ND	1.6	1.3		1	84	0.77	56-136	30	10/04/2023 2303
delta-BHC	ND	1.6	1.5		1	95	1.5	52-142	30	10/04/2023 2303
cis-Chlordane	ND	1.6	1.3		1	83	0.41	60-129	30	10/04/2023 2303
trans-Chlordane	ND	1.6	1.4		1	86	0.46	56-136	30	10/04/2023 2303
4,4'-DDD	ND	1.6	1.4		1	90	1.1	56-143	30	10/04/2023 2303
4,4'-DDE	ND	1.6	1.3		1	81	0.36	57-135	30	10/04/2023 2303
4,4'-DDT	ND	1.6	1.2		1	73	6.1	51-143	30	10/04/2023 2303
Dieldrin	ND	1.6	1.5		1	95	1.3	60-136	30	10/04/2023 2303
Endosulfan I	ND	1.6	1.4		1	87	0.24	62-126	30	10/04/2023 2303
Endosulfan II	ND	1.6	1.4		1	84	3.3	52-135	30	10/04/2023 2303
Endosulfan sulfate	ND	1.6	1.4		1	89	1.2	62-133	30	10/04/2023 2303
Endrin	ND	1.6	1.2		1	73	0.50	60-138	30	10/04/2023 2303
Endrin aldehyde	ND	1.6	1.4		1	89	1.2	51-132	30	10/04/2023 2303
Endrin ketone	ND	1.6	1.6		1	102	1.4	58-134	30	10/04/2023 2303
Heptachlor	ND	1.6	1.3		1	79	0.62	54-130	30	10/04/2023 2303
Heptachlor epoxide	ND	1.6	1.4		1	87	0.35	61-133	30	10/04/2023 2303
Methoxychlor	ND	1.6	1.2		1	75	5.5	54-145	30	10/04/2023 2303
Surrogate	Q	% Rec	Acceptance Limit	;						
Decachlorobiphenyl		61	20-122							

44-124

LOQ = Limit of Quantitation U = Not detected at or above the LOD N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL P = The RPD between two GC columns exceeds 40% LOD = Limit of Detection * = RSD is out of criteria + = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

92

Tetrachloro-m-xylene

Chain of Custody and Miscellaneous Documents

CHAIN-OF-CUSTODY RECORD	RECO		Bhate Erwironmental Associates, Inc. Elizabeth Rivine 305 Sasangus Urive, Greenville, SC 29615 864-982-8890, Erhino@bhate.com	tal Aseoc /e, Green inc@bha	iates, ville, d	20 59 L	3 16					COULER	-	000	;# c0	COC # COC0923_BHAT Page 1 of 2	AT f 2
Project Name: Joint Base Charloston Air, Long Term Monitoring	loston Air	, Long Term N	fonitoring	Ē	abor	atory:	Pace	thalyli	al Sen	ices, LL	Laboratory: Pace Analytical Services, LLC, West Columbia, SC	a, SC			Event: 3	Event: 2023 Routine Sampling	
Project Number: CHRTN-I.TM/SAS2300.1000.02	AS2300.1	000.02		-	ö	Scott	Gotsha	en Gen	eral Ma	nager, 8	POC: Scott Gotsholi, General Manager, 803.973.0968, scott.gotshall@pacelabs.com	H.gotshall@pac	elabs.com		- -	ņ	
WBS Code:				-	Ship t	0: 106	Vanta	ge Poi	nt Drive	West C	Ship to: 106 Vantage Point Drive, West Columbia, SC 29172	72					7
Commenter					\vdash		F		E		Code Matrix	rix					[
Commenter Brwstar (v) = BMA SIM BrwstM (v) = PLACEHOLDER In addivide spreaning checks	areaning che	\$			(A) I						WG Gro	Ground Vlater					
3//9081 (A) = Pesterias					VISA						Code	Cons	ContainedPreservative		; 		
					(V) - (30						6 tr 1LA protecto	ts 11. Austor glass boths with Pollon Inset cop, Cool to C* 10.6 °C, projected from tight, in seeled visit with PTE-Street septia	th Totion irred ca divisits with PTFE	a, Cool to C* to 6 °C. Hened septa	¥ ¥	130001	
					_		\$30				23 1x1LA	1x 11. Amber glass bottle with Teffan lined cap, Coel 0° to 8°C	th Tellan Ined ca	P, Coel 0" to B"C	,		_
				iesi Tes	3 - MIS	S - seb	V - 008				31 32 VOA	3x VOA, 40 mL Clear glass vial with Tafton fined supla, Cool 0" to 6"C	vial with Tetton in	ed supts, Cool of to			
Equipment:							2844										
Event 2023 Routine Sampling	2				-	23	31										
								-				Sample		Depth (it bgs)			
Sample ID	Matrix	Date	Time	Samp							Location ID	D Type		Top - Bottom	- 50	Comments	
11 Z2-02_3923	WC	9/28/2023	1546	5	×	×	×				Z2-02	IN		82	-		
17 Z2-04_0923	MG	9/28/2023	1451	Ę	×		×	_			22-04	N1		8	_		
17 Z2-04_0923-MS	MG	9/28/2023	1451	5			×				Z2-04	MS		8	_		
17 Z2-04_0523-MSD	WG	a/28/2023	1451	Ľ			×				Z2-04	dsm	-	8	_		
15 Z2-04_0823-a	MG	9/28/2023	1451	Ę			×		_		22-04	£					T
6 Z2-12_0923	Ŵ	9/28/2023	920	æ	×		×		_	-	22-12	ž	-	19.1	-		
14 22-32 0923	9 4 8	6/29/2023	1025	뚱	×		×		1		72.38	5 3	35	-			Т
16 44-30_0323	NG S	5//6/2023 0/0/0/0/23	1001	5 8	< ×		< ×				21-22	╞	-				
_	ΜG	9/29/2023	1200	ß	×						Z2-138-01	+	e	13			
34 TBOB 0923-C	WQ.	9/28/2023	1001		\vdash	-	×			-	FELDOC	B	0	•		*Two VOAs	
Turnaround Time: NA																	
Released by Caitlin Avan	Signature	NNO.	23	Date/Time: <u>9/29/2023</u> @0615 F Relinquished to	16:9/	9/202	<u>80</u>	2	elinguis	hed to	PACE Lab	K Shipping No.	g No.	Date/Tim	Date/Time_9/29/22	2 2015	
Released by	Signature	fe		Date/Tin	a				Relinquished to	hed to		Other	ĺ	Date/Time			
Released by	Signature	lfe.		_ Date/Time_	e			-	Relinquished to	hed to				Date/Time	a		
														V	i V	S 2 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 .	K
														2	2 2	charte	2

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

PACE ANALYTICAL SERVICES, LLC

Project Name: Joint Base Charleston Air, Long Term Monitoring Boston Number CUDTNJ TMISAS200 1000 02		86-98	864-982-8890, Ethina@bhate.com	1a@bhat	B.COT	72017									
Vert Number CURTNUI TM/SA	ston Air, L	.ong Term Mc	snitoring	Ē	aborato	ry: Pao	s Analylik	al Servic	cs, LLC	Laboratory: Pace Analytical Services, LLC, West Columbia, SC				Event: 207	Event: 2023 Routine
terimination of the second states of the second sta	\$2300.100	20.02		۵	OC: Sox	dl Gola	ali, Gene	eral Mana	ger, BÖS	POC: Scott Getahall, General Manager, 803.973.0558, acctt.gotshall@pace.abs.com	nall@pacelabs	0010		Sempling	
WBS Code:				S	hip to:	106 Ven	iage Poir	It Drive, V	Vest Co	Ship to: 106 Ventage Point Drive, West Columbia, SC 29172					1
Comments:							F		\vdash	Code Matrix					
Broasim (A) – Broasim (NASIM (A) – PLACEHOLDER In arthono screening checks SXXXVP1 (A) – Provided –s	coning chooks				(∀) W						aler				
					ISAN					Sde	Contsiner/Press native	Genetive			如此空間的
					ia - (a	(14)					1x 11. Amber glass botte with Teller (ned cas, Cool to D° as 6 °C), protected from light, is assign viela with PTFE-Incodocpta	n fred cso. Cool with PTFE-Inadis	10 0* 10 6 °C, cpta	ΞĘ Έ	Y130001
				No. of Concession, Name	0228					23 14 LL Amberglo	14.1.L.Amber glass bottle with Tettan fined cap, Cool 9" to 6"C	In firmed casp, Cool	0.10 6'C	CO DA	
				eT lesit - Mi2 :) anateri	/2 - səbi				31 81C	Эк VOA, 40 rM, Char glaves vid with Tidhen Ined septa, Cool 9" to 8°C	Tafton Ined sopl	a, Cool 0" ta		
Equipment:					ude _N			-							
Event 2023 Routine Sampling					6		L								
				Samp							Sample	Depth (ft bgs)		Coole	
Semple ID 72-11: 0823	Matrix	Date	Time		-	-	+	+		Location (D Z2-61	Type	Tcp - Bottom	kottorn 35	-	Comments
Z2-11 0923-MS	+	9/26/2023	1655	1						Z2-11	WS	10	35	t	
Z2-11_0928-MSD	WG *	9/26/2023	1655	+	×		1		-	22-11	SD	10	35		
22-45_0923	-	9/28/2023	1310	82	×	×	╞		-	Z2-45	ž	5.5	15.5		
Z2-45_0923-a	-	9/28/2023	1310	22		×				22-45	5	5.5	15.5	-	
Z2-45_0923-MS	ВW	9/28/2023	1310	~ SS	×					22-45	MS	5.5	15.6		
Z2-45_0923-MSD	-	9/28/2023	1310	RS >	×					72-45	9	5.5	15.5		
22-50_0923	-	9/28/2023	1615	CR CR	×	×				Z2-50	Ы	\$3	4	-	
Z2-52R_0923	MG	9/28/2023	1600	CR .	×	×				Z2-52R	Ň	æ	16		
Z2-53_0923		9/28/2023	1440	CR >	X	X				22-53	ž	-	÷		
Z2-54_0923	NG.	9/29/2025	1415	ð	×	×				22-64	۲,	4	4		
MW-01-129_0923	5MG	9/29/20/28	1555	£	×	×				MW-01-129	IJ	9	16		
MW-01-129_0923-a	ØM	9/29/2023	1555	ся	×	×			\vdash	MW-01-129	Ð	9	16		
Beleesed by Caidin Ruan	Signature	3	No.	Date/Time	5/62/6 :s	023 @	BISP's	Date/Time: <u>9/29/2023 @ ()8/5</u> ^A Relinquisted to	ß	PACE Lab Colin	Shipping No.		Date/Time 424 23	29 22	2102
Released by	Signature			Dete/Time_			n2	Relinquished to	50		Other		Date/Fime		
Released by	Signature			Date /Twre			a	Relinantiched to	\$				Deer/Time		

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

PACE ANALYTICAL SERVICES, LLC

DC#_Title: ENV-FRM-WCOL-0286 v02_Samples Receipt Checklist (SRC) Effective Date: 8/2/2022

Sample Receipt Checklist (SRC)

Client: ARCADIS Cooler Inspected by/date: CBP / 09/29/23 Lot #: YI30001
Means of receipt: Pace / Client UPS FedEx Other:
Yes √ No 1. Were custody seals present on the cooler?
Yes No X NA 2. If custody seals were present, were they intact and unbroken?
pH Strip ID: NA Chlorine Strip ID: NA Tested by: NA
Original temperature upon receipt / Derived (Corrected) temperature upon receipt %Solid Snap-Cup ID: №A
Method: Temperature Blank Against Bottles IR Gun ID: 8 IR Gun Correction Factor: ⁰ °C
Method of coolant: 🖌 Wet Ice 🗌 Ice Packs 💭 Dry Ice 📃 None
[3] Were all coolers received at an below 6.09C? If no, was Drojent Manager natified?
Yes No NA PM was Notified by: phone / email / face-to-face (circle one).
Yes No VNA 4. Is the commercial courier's packing slip attached to this form?
✓ Yes No 5. Were proper custody procedures (relinquished/received) followed?
Yes No 6. Were sample IDs listed on the COC and all sample containers?
✓ Yes No 7. Was collection date & time listed on the COC and all sample containers?
Yes No 8. Did all container label information (ID. date, time) agree with the COC?
✓ Yes No 9. Were tests to be performed fisted on the COC?
Yes No 10. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?
Yes No 11. Was adequate sample volume available?
Yes No 12. Were all samples received within ½ the holding time of 48 hours, whichever comes first?
✓ Yes No 13. Were all samples containers accounted for? (No missing/excess)
Tar., Edat. The 14. Were VOA, 8015C and RSK-175 samples free of bubbles >"pea-size" (¼"or 6mm in
Yes No had a solution and the VOA vials?
Yes No VNA 15. Were all DRO/metals/matrical samples received at a pH of < 2?
Yes No \checkmark NA 16. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?
17. Wars all applicable MIT 777 Manualdale ave 1/26 1/600 2 (< 0. Small) counter from of
Yes No NA The an appreade NH ₃ /TKN/cyamde/pitehol/625.1/608.5 (< 0.5mg/L) samples nee of residual chlorine?
Yes No NA 18. Was the quote number listed on the container label? If yes, Quote #
Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) <u>MA</u> were received incorrectly preserved and were adjusted accordingly
in sample receiving with NA mL of circle one: H2SO4, HNO3, HCl, NaOH using SR # NA
Time of preservation <u>NA</u> . If more than one preservative is needed, please note in the comments below.
Sample(s) 1(3); 2(7); 5(3); 11(1); 12(4) were received with bubbles >6 una in diameter.
Samples(s) NA were received with TRC > 0.5 mg/L (If #19 is no) and were
adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Unique ID: <u>NA</u> .
Comments:

Qualtrax (D: 56360

Pace® Analytical Services, LLC

 Pace Analytical Services, LLC
 (formerly Shealy Environmental Services, Inc.)

 106 Vantage Point Drive
 West Columbia, SC 29172
 (803) 791-9700
 Fax (803) 791-9111
 www.pacelabs.com

Report of Analysis

Bhate 1608 13th Avenue South Suite 300 Birmingham, AL 35205 Attention: Marcia Olive

Project Name: JBCA Routine Samp-Main Co Project Number: 30193131.LTM Field - 07 Lot Number:**ZD22015** Date Completed:04/29/2024

Kathy Smith

04/29/2024 6:19 PM Approved and released by: Project Manager II: **Kathy E. Smith**

The electronic signature above is the equivalent of a handwritten signature. This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

Case Narrative Bhate Lot Number: ZD22015

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report. Where sampling is conducted by the client, results relate to the accuracy of the information provided, and as the samples are received.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Additionally, the DoD QSM version 5.4 has been followed for these samples. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs, the DoD QSM, or policies are qualified on the results page or discussed below.

Pace is a DoD/DOE accredited laboratory; however, the following analyses are currently not listed on our DoD/DOE scope of accreditation: Drinking Water: pH EPA 150.1, Turbidity EPA 180.1, Metals EPA 200.7 & 200.8. Mercury EPA 245.1. Anions EPA 300.0. Cvanide EPA 335.4. Nitrates EPA 353.2. Orthophosphate & Phosphorus EPA 365.1, EDB/DBCP EPA 504.1, HPC SIMPLATE, Color SM 2120 B-2011, Alkalinity SM 2320 B-2011, Specific Conductance SM 2510 B-2011, Residue-filterable (TDS) SM 2540 C, Calcium Hardness (CaCO2) SM 3500-Ca B-2011, TRC SM 4500 Cl G-2011, pH SM 4500 H=B-2011, E.Coli, Total Coliform. Non-Potable Water: Metals EPA 200.7, Strontium EPA 200.8, Chlorate EPA 300.0, Cyanide EPA 335.4, Phenolics EPA 420.4, 2-Methyl-4,6-Dinitrophenol EPA 625.1, Propane RSK-175, Specific Conductance SM 2510 B-2011, Salinity SM2520 B, Residue- total SM 2540 B, Sulfite SM 4500 SO32- B-2011, Amenable Cyanide SM 4500-CN- G-2011, BOD & CBOD SM 5210 B, MBAS SM 5540 C-2011, Boron & Titanium SW-846 6010D, Boron, Molybdenum, & Titanium SW-846 6020B, Alcohols & Glycols SW-846 8015C, Pentachlorophenol SW-846 8151A, Ethyl Acetate, Hexane, & n-Hexane SW-846 8260D, SVOC 1,4-Dioxane, 4-Dimethyl aminoazobenzene, 1,4-Naphthoquinone, 3,5-Dinitroaniline, PETN SW-846 8270E, Amenable Cyanide SW-846 9012B. Solid and Chemical Materials: Boron & Titanium SW-846 6010D, Molybdenum SW-846 6020B, Ethylene Glycol SW-846 8015B, Pentachlorophenol SW-846 8151A, Chloroprene SW-846 8260B, SVOC 1,4-Dioxane, 1,3,5-Trinitrobenzene, 1,4- Naphthoquinone, 1,4-Phenylenediamine, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 3-Methylcholanthrene, 4-Aminobiphenyl, 4-Dimethyl aminoazobenzene, 4-Nitroquinoline-1-oxide, 7,12-Dimethylbenzo(a)anthracene, Chlorobenzilate, Diallate, Ethyl methanesulfonate, Isodrin, Isosafrole, Methyl methanesulfonate, n-Nitrosomethylethylamine, n-Nitrosomorpholine, n-Nitrosopiperidine, Piperonyl butoxide, Pronamide, Safrole, 3,5- Dinitroaniline, PETN SW-846 8270E, Oil & Grease SW-846 9071B.

Pace is a TNI accredited laboratory; however, the following analyses are currently not listed on our TNI scope of accreditation: E. coli and Total coliforms SM 9223 B-2004, Solid Chemical Material: TOC Walkley-Black, Biological Tissue: All, Non-Potable Water: SGT-HEM EPA 1664B, Silica EPA 200.7, Boron, Calcium, Silicon, Strontium EPA 200.8, Bicarbonate, Carbonate, and Hydroxide Alkalinity SM 2320 B-2011, SM 9221 C E-2006 & SM 9222D-2006, Strontium SW-846 6010D, VOC SM 6200 B-2011, Fecal Coliform Colilert-18. If you have any questions regarding this report, please contact the Pace Project Manager listed on the cover page.

SC DHEC No: 32010001 NELAC No: E87653 NC DENR No: 329 NC Field I	Parameters No: 5639
--	---------------------

Semivolatiles

The MS/MSD associated with samples ZD22015-001, ZD22015-002 had compounds recovered outside of the acceptance limits. The LCS was recovered within the required acceptance limits; therefore, this demonstrates a matrix effect and data quality is not impacted.

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Manual Integration Summary Bhate Lot Number: ZD22015 Project Name: JBCA Routine Samp-Main Co Project Number: 30193131.LTM Field - 07

Where applicable, analytes for which manual integration occurred have been flagged with the following:

Qualifier	Technical Justification	Qualifier	Technical Justification	Qualifier	Technical Justification
M-01	Split peak	M-07	Low fit	M-13	Error
M-02	Peak tailing	M-08	Peak not found	M-14	Baseline
M-03	Incorrect auto integration	M-09	Analyte not Identified by the Data System	M-15	Other
M-04	Poor chromatography	M-10	Analyte misidentified by the Data System	M-16	Retention time shift
M-05	Manually assigned peak	M-11	Invalid integration	M-17	Shouldering
M-06	Wrong isomer	M-12	Wrong peak		-

A summary of instances where manual integration occurred is included below:

Method	Sample	Run Number	Parameter	Qualifier
8270E (SIM)	ZD22015-001	1	Fluoranthene-d10	M-05

If you have any questions regarding this report, please contact the Pace Project Manager listed on the cover page.

Sample Summary Bhate Lot Number: ZD22015 Project Name: JBCA Routine Samp-Main Co Project Number: 30193131.LTM Field - 07

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	TU544_MW-1R-129_0424	Aqueous	04/18/2024 1940	04/22/2024
002	TU544_MW-1R-129_0424-a	Aqueous	04/18/2024 1940	04/22/2024
003	TU544_MW-1R-129_0424-C	Aqueous	04/18/2024 1941	04/22/2024

(3 samples)

Detection Summary

Bhate

Lot Number: ZD22015

Project Name: JBCA Routine Samp-Main Co

Project Number: 30193131.LTM Field - 07

Sample	Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	TU544_MW-1R-129_0424	Aqueous	Naphthalene	8260D	220		ug/L	6
001	TU544_MW-1R-129_0424	Aqueous	Naphthalene	8270E (SIM)	150	S	ug/L	7
002	TU544_MW-1R-129_0424-a	Aqueous	Naphthalene	8260D	230		ug/L	8
002	TU544_MW-1R-129_0424-a	Aqueous	Naphthalene	8270E (SIM)	130	S	ug/L	9

(4 detections)

Volatile Organic Compounds by GC/MS

	5	1	5					
Client: Bhate				Laborat	tory ID: ZD220	15-001		
Description: TU544_MW-1R-12	9_0424				Matrix: Aqueo	us		
Date Sampled:04/18/2024 1940	Project	Name: JBCA Routir	ne Samp-Main (Со				
Date Received: 04/22/2024	Project Nu	umber: 30193131.LT	M Field - 07					
Run Prep Method	Analytical Method Dilution	Analysis Date A	nalyst Prep	Date Bat	ch			
1 5030B	8260D 1	04/25/2024 1311	DPH	106	75			
2 5030B	8260D 5	04/26/2024 1732	DPH	107	44			
Parameter	(Num	CAS Analytica ber Method		Q LC	DQ LOD	DL	Units	Run
Naphthalene	91-2	20-3 8260	D 220	5	.0 4.0	2.0	ug/L	2
Surrogate	Run 1 Q % Recovery	Acceptance Limits Q	Run 2 Ac % Recovery	cceptance Limits				
Bromofluorobenzene	109	85-114	111	85-114				
Dibromofluoromethane	88	80-119	88	80-119				
1,2-Dichloroethane-d4	85	81-118	86	81-118				
Toluene-d8	96	89-112	95	89-112				

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Semivolatile Organic Compounds by GC/MS (SIM)

Client: Bhate				Laboratory ID: ZD22015-001						
Description: TU544_MW-1R-12	9_0424			Matrix: Aqueous						
Date Sampled:04/18/2024 1940	Pro	ject Name	: JBCA Routine S	amp-Main Co	C					
Date Received: 04/22/2024	Proje	ct Number	: 30193131.LTM F	ield - 07						
Run Prep Method 1 3520C	5		alysis Date Anal 25/2024 1527 JC	, ,	Date Batch 024 1316 10513					
Parameter	1	CAS Number	Analytical Method	Result	D LOQ	LOD	DL	Units Rur		
Naphthalene		91-20-3	8270E (SIM)	150 S	32	9.6	4.8	ug/L 1		
Surrogate	Run Q % Reco		eptance imits							
Fluoranthene-d10	M-05 70	2	3-154							
2-Methylnaphthalene-d10	85	1	5-139							

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \geq DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Volatile Organic Compounds by GC/MS

		5 1	5						
Client: Bhate				Labor	atory ID): ZD22015-	002		
Description: TU544_MW-1R-12	29_0424-a				Matrix	: Aqueous			
Date Sampled:04/18/2024 1940	Projec	t Name: JBCA Rou	tine Samp-Main (Со					
Date Received: 04/22/2024	Project	Number: 30193131.L	TM Field - 07						
Run Prep Method	Analytical Method Dilution	on Analysis Date	Analyst Prep	Date B	atch				
1 5030B	8260D 1	04/25/2024 133	3 DPH	10	675				
2 5030B	8260D 5	04/26/2024 175	4 DPH	10)744				
Parameter	Nu	CAS Analyti mber Meth		QL	.00	LOD	DL	Units	Run
Naphthalene	91	-20-3 82	60D 230		5.0	4.0	2.0	ug/L	2
Surrogate	Run 1 Q % Recove	Acceptance ry Limits Q	Run 2 Ao % Recovery	cceptance Limits					
Bromofluorobenzene	108	85-114	112	85-114					
Dibromofluoromethane	87	80-119	89	80-119					
1,2-Dichloroethane-d4	84	81-118	87	81-118					
Toluene-d8	95	89-112	96	89-112					

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

Semivolatile Organic Compounds by GC/MS (SIM)

Client: Bhate			Laboratory ID: ZD22015-002						
Description: TU544_MW-1R-12	9_0424-a			Matri	x: Aqueous	5			
Date Sampled:04/18/2024 1940	Project	Name: JBCA Routine Sa	amp-Main Co						
Date Received: 04/22/2024	Project Nu	umber: 30193131.LTM Fi	ield - 07						
Run Prep Method 1 3520C	Analytical Method Dilution 8270E (SIM) 100	n Analysis Date Analy 04/25/2024 1646 JCC		Batch 16 10513					
Parameter	(Num	CAS Analytical ber Method	Result Q	LOQ	LOD	DL	Units Run		
Naphthalene	91-2	20-3 8270E (SIM)	130 S	65	20	9.7	ug/L 1		
Run 1 Acceptance Surrogate Q % Recovery									
Fluoranthene-d10	61	23-154							
2-Methylnaphthalene-d10	64	15-139							

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeDL = Detection LimitQ = Surrogate failureU = Not detected at or above the LODN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%J = Estimated result < LOQ and \geq DLL = LCS/LCSD failureH = Out of holding timeW = Reported on wet weight basisLOD = Limit of DetectionS = MS/MSD failure

Volatile Organic Compounds by GC/MS

							10 700004	F 000		
Client: Bhate						Laboratory	ID: ZD2201	5-003		
Description: TU544_MW-1R-12	9_0424-C					Matr	ix: Aqueou	IS		
Date Sampled:04/18/2024 1941		Project N	lame: JBC	A Routine S	amp-Main Co					
Date Received: 04/22/2024		Project Nur	mber: 3019	93131.LTM F	ield - 07					
Run Prep Method	Analytical Method	Dilution	Analysis	s Date Anal	yst Prep Da	te Batch				
1 5030B	8260D	1	04/25/20	24 1226 DP	H	10675				
		C/ Numb	AS A	Analytical						
Parameter		Numb	ber	Method	Result Q	LOQ	LOD	DL	Units	Run
Naphthalene		91-20)-3	8260D	0.80 U	1.0	0.80	0.40	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits							
Bromofluorobenzene		108	85-114							
Dibromofluoromethane		86	80-119							
1,2-Dichloroethane-d4		85	81-118							
Toluene-d8		96	89-112							

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
U = Not detected at or above the LOD	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \geq DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection		S = MS/MSD failure

QC Summary

Sample ID: ZQ10675-001 Batch: 10675 Analytical Method: 8260D				Pre	Matrix: Aque p Method: 5030			
Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Naphthalene	0.80	U	1	1.0	0.80	0.40	ug/L	04/25/2024 1121
Surrogate	Q % R	ec	Acceptance Limit					
Bromofluorobenzene	107		85-114					
Dibromofluoromethane	85		80-119					

81-118

89-112

85

94

1,2-Dichloroethane-d4

Toluene-d8

Volatile Organic Compounds by GC/MS - LCS

Sample ID: ZQ10675-002 Batch: 10675 Analytical Method: 8260D	02 Matrix: Aqueous Prep Method: 5030B											
Parameter	Spike Amount (ug/L)		Result (ug/L)			% Rec	%Rec Limit	Analysis Date				
Naphthalene	50		50		1	99	61-128	04/25/2024 0958				
Surrogate	Q	% Rec	Accepta Limi									
Bromofluorobenzene		99	85-1	14								
Dibromofluoromethane		97	80-1	19								
1,2-Dichloroethane-d4		101	81-1	18								
Toluene-d8		101	89-1	12								

LOQ = Limit of QuantitationU = Not detected at or above the LODN = Recovery is out of criteriaDL = Detection LimitJ = Estimated result < LOQ and ≥ DL</td>P = The RPD between two GC columns exceeds 40%LOD = Limit of Detection* = RSD is out of criteria+ = RPD is out of criteriaNote: Calculations are performed before rounding to avoid round-off errors in calculated results-

Volatile Organic Compounds by GC/MS - MS

Sample ID: ZD22015-001MS Batch: 10675 Analytical Method: 8260D	5				Matrix: Prep Method:	Aqueous 5030B			
Parameter	Sam Amo (ug	bunt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Naphthalene	220	I	50	250	E	1	73	61-128	04/25/2024 1417
Surrogate	Q	% Red		ceptance Limit					
Bromofluorobenzene		101	Ę	85-114					
Dibromofluoromethane		97	8	80-119					
1,2-Dichloroethane-d4		97	8	81-118					
Toluene-d8		101	8	89-112					

LOQ = Limit of QuantitationU = Not detected at or above the LODN = Recovery is out of criteriaDL = Detection LimitJ = Estimated result < LOQ and ≥ DL</td>P = The RPD between two GC columns exceeds 40%LOD = Limit of Detection* = RSD is out of criteria+ = RPD is out of criteriaNote: Calculations are performed before rounding to avoid round-off errors in calculated results-

Volatile Organic Compounds by GC/MS - MSD

Sample ID: ZD22015-001MD Batch: 10675 Analytical Method: 8260D					Prep N		: Aqueo : 5030B					
Parameter	Sam Amc (ug,	unt	unt Amount		Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit 20	Analysis Date	
Naphthalene			50	260	E	1	79	1.3	61-128		04/25/2024 1438	
Surrogate	Q	% Rec	Ac	ceptance Limit								
Bromofluorobenzene		102		85-114								
Dibromofluoromethane		100		80-119								
1,2-Dichloroethane-d4		99		81-118								
Toluene-d8		103		89-112								

 Pace Analytical Services, LLC
 (formerly Shealy Environmental Services, Inc.)

 106 Vantage Point Drive
 West Columbia, SC 29172
 (803) 791-9700
 Fax (803) 791-9111
 www.pacelabs.com

		5		•	3			
Sample ID: _{ZQ10744-001} Batch: 10744 Analytical Method: 8260D				Pre	Matrix: Aqueo p Method: 5030E			
Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Naphthalene	0.80	U	1	1.0	0.80	0.40	ug/L	04/26/2024 1034
Surrogate	Q % R	Q % Rec		tance nit				
Bromofluorobenzene	104	9	85-114					
Dibromofluoromethane	87		80-119					
1,2-Dichloroethane-d4	85		81-	118				

89-112

95

 Pace Analytical Services, LLC
 (formerly Shealy Environmental Services, Inc.)

 106 Vantage Point Drive
 West Columbia, SC 29172
 (803) 791-9700
 Fax (803) 791-9111
 www.pacelabs.com

Toluene-d8

Volatile Organic Compounds by GC/MS - LCS

Sample ID: ZQ10744-002 Batch: 10744 Analytical Method: 8260D	Batch: 10744 Prep Method: 5030B											
Parameter	Spike Amount (ug/L)		Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date				
Naphthalene	50		49		1	98	61-128	04/26/2024 0937				
Surrogate	Q	% Rec	Accepta Limi									
Bromofluorobenzene		96	85-1	14								
Dibromofluoromethane		95	80-1	19								
1,2-Dichloroethane-d4		97	81-1	18								
Toluene-d8		96	89-1 ⁻	12								

LOQ = Limit of QuantitationU = Not detected at or above the LODN = Recovery is out of criteriaDL = Detection LimitJ = Estimated result < LOQ and ≥ DL</td>P = The RPD between two GC columns exceeds 40%LOD = Limit of Detection* = RSD is out of criteria+ = RPD is out of criteriaNote: Calculations are performed before rounding to avoid round-off errors in calculated results-

 Pace Analytical Services, LLC
 (formerly Shealy Environmental Services, Inc.)

 106 Vantage Point Drive
 West Columbia, SC 29172
 (803) 791-9700
 Fax (803) 791-9111
 www.pacelabs.com

Ser	nivolati	le Org	janic (Compou	inds by GC/	MS (SIM) -	MB	
Sample ID: ZQ10513-001 Batch: 10513 Analytical Method: 8270E (SIM)					Matrix: Aqueo p Method: 35200 Prep Date: 04/23	2		
Parameter	Result	Q	Dil	LOQ	LOD	DL	Units	Analysis Date
Naphthalene	0.060	U	1	0.20	0.060	0.030	ug/L	04/25/2024 1250
Surrogate	Q % Rec		Acceptance Limit					
Fluoranthene-d10	79		23-154					
2-Methylnaphthalene-d10	7	77		139				

Semivolatile Organic Compounds by GC/MS (SIM) - LCS

Sample ID: ZQ10513-002 Batch: 10513 Analytical Method: 8270E (SIM)			Pr	ep Method:	Aqueous 3520C 04/23/2024 13	16	
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Naphthalene	0.60	0.43		1	72	43-114	04/25/2024 1316
Surrogate	Q % Rec	Accepta Limit					
Fluoranthene-d10	81	23-15	4				
2-Methylnaphthalene-d10	78	15-13	9				

Semivolatile Organic Compounds by GC/MS (SIM) - MS

Sample ID: ZD22015-001MS Batch: 10513 Analytical Method: 8270E (SIM)					Matrix: Prep Method: Prep Date:				
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Naphthalene	150		0.97	120	Ν	100	-2800	43-114	04/25/2024 1553
Surrogate	Q	% Rec	Ac	cceptance Limit					
Fluoranthene-d10		60		23-154					
2-Methylnaphthalene-d10		76		15-139					

Semivolatile Organic Compounds by GC/MS (SIM) - MSD

Sample ID: ZD22015-001MD Batch: 10513 Analytical Method: 8270E (SIM)		Matrix: Aqueous Prep Method: 3520C Prep Date: 04/23/2024 1316											
Parameter	Samı Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	C	Dil %F	lec	% RPD	%Rec Limit	% RPD Limit	Analysis Date	
Naphthalene	150		0.98	130	Ν	1	100 -16	80	8.3	43-114	20	04/25/2024 1620	
Surrogate	Q	% Rec	Ac	ceptance Limit									
Fluoranthene-d10		69		23-154									
2-Methylnaphthalene-d10		73		15-139									

Semivolatile Organic Compounds by GC/MS (SIM) - MS

Sample ID: ZD22015-002MS Batch: 10513 Analytical Method: 8270E (SIM)					Matrix: Prep Method: Prep Date:				
Parameter	Samı Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Naphthalene	130		4.0	160	Ν	100	794	43-114	04/25/2024 1712
Surrogate	Q	% Rec	Ac	ceptance Limit					
Fluoranthene-d10		62		23-154					
2-Methylnaphthalene-d10		60		15-139					

Semivolatile Organic Compounds by GC/MS (SIM) - MSD

Sample ID: ZD22015-002MD Batch: 10513 Analytical Method: 8270E (SIM)		Matrix: Aqueous Prep Method: 3520C Prep Date: 04/23/2024 1316												
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q		Dil %I	Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date		
Naphthalene	130		4.0	160	Ν		100 76	5	0.73	43-114	20	04/25/2024 1738		
Surrogate	Q	% Rec	Ac	ceptance Limit										
Fluoranthene-d10		62		23-154										
2-Methylnaphthalene-d10		65		15-139										

Chain of Custody and Miscellaneous Documents

COC # TU544_MW-1R-	129_0424	LLC, West Columble, SC Event: JBCA Reutine Samp-Vieln Co		olumba, SC 29172		Code Malaix	VKG Ground Water	WQ Weter Query Control Matrix	Code ContratelPreserve In	 ign. 18. VOI-40-references ster with Trailer and taken and	2 HOL CAN C' IN ALL WILL THE						Sample Depth (ft tas)	Location ID 1ype Top - Bottom Cooler Conments	A 1 First sem	WW-1R-129 FD1 NA NA 1 Well developed on 48024	NA NA 1	AN	AN		
	445 Union Boulevard, Suris 129, Lanawood, CO 60220 (303) 463.3906, maliko@bhate.com	Letioratory: Pace Analytical Services, LLC, West Columbia, SC	POC: Kathy Smith, 912,465,7601, Kathy.Smith@pacelabs.com	Ship to: 106 Vantage Point Dr. West Columba, SC 29172						po	5438	v) 3	AUS	0229W	s	1 2	5		× × ×		XXX	XXX	X		
EEAB Eizebeih Rhina	445 Union Boulevard, St (303) 483.2906, molitor						_											Dale Time Init.	4/18/2024 1940 CR	4/16/2024 1940 CR	4/16/2024 1640 CR	4/16/2024 1540 CR	4/18/2024 1941 CR		
ECORD		Mein Co	AIN			1	ane Only	e Only								900		Matrix	-	WG	-	MG 4	WQ 4		
CHAIN-OF-CUSTODY RECORD		Project Name: JBCA Routine Samp-Main Co	Project Number: \$A\$2300.1000.02.MAM	WBS Code:	Comments.	Comments:	SW82708IM (A) = Napthalene Only	SW8260D (A) = Napthalene Only					Equipments			Event: 2024 Annual Basewide, CG604		Sample IO		2 TU544_MW-1R-129_0424-8	TUE44_MW-1H-129_0424-MS	3 TUS44_MW-1R-129_0424-MISD	4 TU544_MW-1R-129_0624-C	Turnaround Time: NA	

1 Date 4/22/24 The shipping pate Shipping pate Received by Laboretory, (Signature, Date, Time), 8 conditio 020 y: (Signature) Ę, 5 Relinquished b Received by: (Sig cocheveloes Date time

1=1)*

PACE ANALYTICAL SERVICES, LLC

Pace Analytical Services, LLC *(formerly Shealy Environmental Services, Inc.)* 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

DC#_Title: ENV-FRM-WCOL-0286 v02_Samples Receipt Checklist (SRC) Effective Date: 8/2/2022 Sample Receipt Checklist (SRC)

Client: BHATE Means of receipt: F	Cooler Inspected by/date: CDR / 4/22/24 Lot #: ZD22015 Pace Client UPS I FedEx Other:
VYes No	1. Were custody seals present on the cooler?
	A 2. If custody seals were present, were they intact and unbroken?
pH Strip ID: NA	Chlorine Strip ID: ^{NA} Tested by: ^{NA}
	an receipt / Derived (Corrected) temperature upon receipt %Solid Snap-Cup ID: NA
1.1 / 1.1 or NA /	NA °C NA /NA °C NA /NA °C
	Blank Against Bottles IR Gun ID: 8 IR Gun Correction Factor: 0 °C
Method of conlant:	Wet Ice Ice Packs Dry Ice None
	2. Were all coolers required at as below C 00/00 IE
Yes No N/	PM was Notified by: phone / email / face-to-face (circle one).
Yes No NA	4. Is the commercial courier's packing slip attached to this form?
Yes No	5. Were proper custody procedures (relinquished/received) followed?
✓ Yes No	6. Were sample IDs listed on the COC and all sample containers?
Ves No	7. Was collection date & time listed on the COC and all sample containers?
Yes No	Did all container label information (ID, date, time) agree with the COC?
Yes No	Were tests to be performed listed on the COC?
Ves No	10. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?
Yes No	11. Was adequate sample volume available?
VYes No	12. Were all samples received within 1/2 the holding time or 48 hours, whichever comes first?
Yes No	13. Were all samples containers accounted for? (No missing/excess)
Yes No NA	14. Were VOA. 8015C and RSK-175 samples free of bubbles >"pea-size" (¼"or 6mm in dianieter) in any of the VOA vials?
Yes No VNA	15. Were all DRO/metals/nutrient samples received at a pH of < 2?
Yes No 🗸 NA	16. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?
Yes No NA	17 Wass all applicable NIT (TTO)/uppi/d/date t/(C25 1/(C05 2 (c 0.5 1/1)))
	residual chlorine?
Yes No VNA	18. Was the quote number listed on the container label? If yes, Quote #
Yes No VNA	NA
Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) NA	
in sample receiving with	were received incorrectly preserved and were adjusted accordingly
Fime of preservation NA	
Time of preservation	. If more than one preservative is needed, please note in the comments below.
Sample(s) <u>NA</u>	were received with bubbles >6 mm in diameter.
Samples(s) NA	were received with TRC > 0.5 mg/L (If #19 is no) and were
djusted accordingly in sa	ample receiving with sodium thiosulfate (Na2S2O3) with Unique ID: NA
Comments:	
·····	

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	BNASIME	SW8081B	SW8260D
MW-01-129_0923	YI30001-017	Water	Field Sample/N	Х		Х
MW-01-129_0923-a	YI30001-018	Water	Field Duplicate/FD	Х		Х
TB08_0923-C	YI30001-009	Water	Trip Blank/TB			Х
Z2-02_0923	YI30001-001	Water	Field Sample/N	Х	Х	Х
Z2-04_0923	YI30001-002	Water	Field Sample/N	Х		Х
Z2-04_0923-a	YI30001-003	Water	Field Duplicate/FD			Х
Z2-11_0923	YI30001-010	Water	Field Sample/N	Х		Х
Z2-12_0923	YI30001-004	Water	Field Sample/N	Х		Х
Z2-138-01_0923	YI30001-008	Water	Field Sample/N	Х		
Z2-32_0923	YI30001-005	Water	Field Sample/N	Х		Х
Z2-36_0923	YI30001-006	Water	Field Sample/N	Х		Х
Z2-45_0923	YI30001-011	Water	Field Sample/N	Х		Х
Z2-45_0923-a	YI30001-012	Water	Field Duplicate/FD			Х
Z2-50_0923	YI30001-013	Water	Field Sample/N	Х		Х
Z2-52R_0923	YI30001-014	Water	Field Sample/N	Х		Х
Z2-53_0923	YI30001-015	Water	Field Sample/N	Х		Х
Z2-54_0923	YI30001-016	Water	Field Sample/N	Х		Х
Z2-T3_0923	YI30001-007	Water	Field Sample/N	Х		Х

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at S4VEM data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the CHRTN UFP-QAPP and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Bhate Environmental Associates, Inc., Birmingham, AL; analyses were performed by Pace Analytical Services, LLC, West Columbia, SC and were reported under sample delivery group (SDG) YI30001. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Field Duplicate RPD Lab Blank LCS Recovery LCS RPD MS Recovery MS RPD Prep Hold Time Surrogate Test Hold Time Trip Blank

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 49 results (5.64%) out of the 869 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

It was noted that the parent sample for one MS/MSD pair is listed as Z2-04_0923 on the COC, however, the parent sample is listed as Z2-02_0923 in the EDD.

Analytical Method	Data Reviewer Comment
BNASIME	No additional comments; see Checklist for detail.
SW8081B	No additional comments; see Checklist for detail.
SW8260D	No additional comments; see Checklist for detail.

April 16, 2024

Reviewed by Kathryn Cantone, Data Review Chemist, Synectics, Sacramento, CA

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Evin Mckininey

Reviewed by Evin McKinney, Senior Scientist, Synectics, Sacramento, CA

April 18, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method BNASIME, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
Z2-02_0923-MS (MS) YI30001-001MS	Pentachlorophenol	193	36 - 141	10 - 141	percent	J/None	М	
Z2-02_0923-MSD (SD) YI30001-001MD	Pentachlorophenol	185	36 - 141	10 - 141	percent	J/None	М	
Z2-11_0923-MS (MS) YI30001-010MS	Pentachlorophenol	210	36 - 141	10 - 141	percent	J/None	М	
Z2-11_0923-MSD (SD) YI30001-010MD	Pentachlorophenol	190	36 - 141	10 - 141	percent	J/None	М	
Z2-45_0923-MS (MS) YI30001-011MS	Pentachlorophenol	200	36 - 141	10 - 141	percent	J/None	М	
Z2-45_0923-MSD (SD) YI30001-011MD	Pentachlorophenol	200	36 - 141	10 - 141	percent	J/None	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8081B, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
YQ86402-002 (BS) YQ86402-002	Toxaphene	160	33 - 134	33 - 134	percent	J/None	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8260D, Continuing Calibration Verification

Compliance requirements for satisfactory continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

				,	,			,
Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
VSTD050JN (CV)	1,1-Dichloroethane	76.1	80 - 120	80 - 120	percent	J/UJ	V2	
VSTD050JN (CV)	Chloroform	78.5	80 - 120	80 - 120	percent	J/UJ	V2	
VSTD050JN (CV)	cis-1,2- Dichloroethene	79.1	80 - 120	80 - 120	percent	J/UJ	V2	
VSTD050JN (CV)	Cyclohexane	72.1	80 - 120	80 - 120	percent	J/UJ	V2	
VSTD050JV (CV)	1,2,4- Trichlorobenzene	78.2	80 - 120	80 - 120	percent	J/UJ	V2	
VSTD050JV (CV)	Acetone	73.8	80 - 120	80 - 120	percent	J/UJ	V2	
VSTD050JV (CV)	Bromoform	76.0	80 - 120	80 - 120	percent	J/UJ	V2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Continuing Calibration Verification for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
TB08_0923-C YI30001-009	ТВ	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2
TB08_0923-C YI30001-009	ТВ	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2
TB08_0923-C YI30001-009	ТВ	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2
TB08_0923-C YI30001-009	ТВ	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2
Z2-02_0923 YI30001-001	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-02_0923 YI30001-001	Ν	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-02_0923 YI30001-001	Ν	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2
Z2-02_0923 YI30001-001	N	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2
Z2-04_0923 YI30001-002	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-04_0923 YI30001-002	Ν	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-04_0923 YI30001-002	Ν	cis-1,2-Dichloroethene	1.00	11.0	11.0 J	-	ug/l	V2
Z2-04_0923 YI30001-002	N	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2
Z2-04_0923-a YI30001-003	FD	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-04_0923-a YI30001-003	FD	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2

eQAPP Version: eQAPP_CHRTN-CHRTN-LTM-PHASE.000000 ENV.ADR April 18, 2024

Qualified Results associated with the Continuing Calibration Verification for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
Z2-04_0923-a YI30001-003	FD	cis-1,2-Dichloroethene	1.00	11.0	11.0 J	-	ug/l	V2
Z2-04_0923-a YI30001-003	FD	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2
Z2-11_0923 YI30001-010	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-11_0923 YI30001-010	N	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-11_0923 YI30001-010	N	cis-1,2-Dichloroethene	1.00	0.790	0.790 J		ug/l	I/TR/V2
Z2-11_0923 YI30001-010	N	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2
Z2-12_0923 YI30001-004	N	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-12_0923 YI30001-004	N	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-12_0923 YI30001-004	Ν	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2
Z2-12_0923 YI30001-004	N	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2
Z2-36_0923 YI30001-006	N	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-36_0923 YI30001-006	Ν	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-36_0923 YI30001-006	Ν	cis-1,2-Dichloroethene	1.00	1.50	1.50 J	-	ug/l	V2
Z2-36_0923 YI30001-006	N	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2
Z2-45_0923 YI30001-011	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-45_0923 YI30001-011	N	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-45_0923 YI30001-011	N	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2
Z2-45_0923 YI30001-011	Ν	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2
Z2-45_0923-a YI30001-012	FD	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-45_0923-a YI30001-012	FD	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2
Z2-45_0923-a YI30001-012	FD	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2
Z2-45_0923-a YI30001-012	FD	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2
Z2-50_0923 YI30001-013	Ν	1,2,4-Trichlorobenzene	1.00	0.800	0.800 UJ		ug/l	V2
Z2-50_0923 YI30001-013	N	Acetone	20.0	10.0	10.0 UJ		ug/l	V1/V2
Z2-50_0923 YI30001-013	Ν	Bromoform	1.00	0.800	0.800 UJ		ug/l	V2
Z2-52R_0923 YI30001-014	Ν	1,2,4-Trichlorobenzene	1.00	0.800	0.800 UJ		ug/l	V2
Z2-52R_0923 YI30001-014	N	Acetone	20.0	10.0	10.0 UJ		ug/l	V1/V2

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
Z2-52R_0923 YI30001-014	Ν	Bromoform	1.00	0.800	0.800 UJ	ug/l	V2
Z2-53_0923 YI30001-015	Ν	1,2,4-Trichlorobenzene	1.00	0.800	0.800 UJ	ug/l	V2
Z2-53_0923 YI30001-015	Ν	Acetone	20.0	10.0	10.0 UJ	ug/l	V1/V2
Z2-53_0923 YI30001-015	Ν	Bromoform	1.00	0.800	0.800 UJ	ug/l	V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8260D, Initial Calibration Verification

Compliance requirements for satisfactory continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
VICV050EO 9/28/23 (IV)	Acetone	63.5	80 - 120	80 - 120	percent	J/UJ	V1	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Initial Calibration Verification for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
Z2-50_0923 YI30001-013	Ν	Acetone	20.0	10.0	10.0 UJ		ug/l	V1/V2
Z2-52R_0923 YI30001-014	Ν	Acetone	20.0	10.0	10.0 UJ		ug/l	V1/V2
Z2-53_0923 YI30001-015	Ν	Acetone	20.0	10.0	10.0 UJ		ug/l	V1/V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8260D, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
YQ87040-002 (BS) YQ87040-002	1,1-Dichloroethane	76.0	77 - 125	77 - 125	percent	J/UJ	С	
YQ87040-002 (BS) YQ87040-002	Chloroform	78.0	79 - 124	79 - 124	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
TB08_0923-C YI30001-009	ТВ	1,1-Dichloroethane	1.00	0.800	0.800 UJ	ug/l	C/V2
TB08_0923-C YI30001-009	ТВ	Chloroform	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-02_0923 YI30001-001	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-02_0923 YI30001-001	Ν	Chloroform	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-04_0923 YI30001-002	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-04_0923 YI30001-002	Ν	Chloroform	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-04_0923-a YI30001-003	FD	1,1-Dichloroethane	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-04_0923-a YI30001-003	FD	Chloroform	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-11_0923 YI30001-010	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-11_0923 YI30001-010	Ν	Chloroform	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-12_0923 YI30001-004	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-12_0923 YI30001-004	Ν	Chloroform	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-36_0923 YI30001-006	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-36_0923 YI30001-006	Ν	Chloroform	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-45_0923 YI30001-011	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-45_0923 YI30001-011	Ν	Chloroform	1.00	0.800	0.800 UJ	ug/l	C/V2
Z2-45_0923-a YI30001-012	FD	1,1-Dichloroethane	1.00	0.800	0.800 UJ	ug/l	C/V2

Qualified Results associated with the LCS Recovery for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
Z2-45_0923-a YI30001-012	FD	Chloroform	1.00	0.800	0.800 UJ	ug/l	C/V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8260D, LCS RPD

The objective of laboratory control sample/laboratory control sample duplicate (LCS/LCSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. LCS/LCSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Laboratory control sample/laboratory control sample duplicate RPD results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
YQ87138-003 (BD) YQ87138-003	Acetone	26.0	< 20	< 20	rpd	J/None	Z	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8260D, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
Z2-11_0923 (N) YI30001-010	1,2- Dichloroethane-d4	119	81 - 118	10 - 118	percent	J/None	I	
Z2-32_0923 (N) YI30001-005	Toluene-d8	117	89 - 112	10 - 112	percent	J/None	I	
Z2-45_0923 (N) YI30001-011	1,2- Dichloroethane-d4	120	81 - 118	10 - 118	percent	J/None	I	
Z2-52R_0923 (N) YI30001-014	1,2- Dichloroethane-d4	119	81 - 118	10 - 118	percent	J/None	I	
Z2-T3_0923 (N) YI30001-007	Toluene-d8	117	89 - 112	10 - 112	percent	J/None	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
Z2-11_0923 YI30001-010	Ν	cis-1,2-Dichloroethene	1.00	0.790	0.790 J		ug/l	I/TR/V2
Z2-45_0923 YI30001-011	Ν	trans-1,2-Dichloroethene	1.00	0.810	0.810 J	+	ug/l	I/TR
Z2-45_0923 YI30001-011	Ν	Vinyl chloride	1.00	26.0	26.0 J	+	ug/l	I
Z2-T3_0923 YI30001-007	Ν	Tetrachloroethene (PCE)	1.00	0.470	0.470 J	+	ug/l	I/TR
Z2-T3_0923 YI30001-007	Ν	Trichloroethene (TCE)	1.00	0.600	0.600 J	+	ug/l	I/TR

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: SW8260D		Extraction Method: SW5030B							
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result B	Bias	Units	Reason	
TB08_0923-C YI30001-009	ТВ	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2	
TB08_0923-C YI30001-009	ТВ	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2	
TB08_0923-C YI30001-009	ΤВ	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2	
TB08_0923-C YI30001-009	ТВ	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2	
Z2-02_0923 YI30001-001	N	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-02_0923 YI30001-001	N	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-02_0923 YI30001-001	Ν	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2	
Z2-02_0923 YI30001-001	N	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2	
Z2-04_0923 YI30001-002	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-04_0923 YI30001-002	Ν	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-04_0923 YI30001-002	Ν	cis-1,2-Dichloroethene	1.00	11.0	11.0 J -		ug/l	V2	
Z2-04_0923 YI30001-002	N	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2	
Z2-04_0923-a YI30001-003	FD	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-04_0923-a Yl30001-003	FD	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-04_0923-a YI30001-003	FD	cis-1,2-Dichloroethene	1.00	11.0	11.0 J -		ug/l	V2	
Z2-04_0923-a YI30001-003	FD	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2	
Z2-11_0923 YI30001-010	N	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-11_0923 YI30001-010	Ν	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-11_0923 YI30001-010	Ν	cis-1,2-Dichloroethene	1.00	0.790	0.790 J		ug/l	I/TR/V2	
Z2-11_0923 YI30001-010	Ν	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2	
Z2-12_0923 YI30001-004	N	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-12_0923 YI30001-004	Ν	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-12_0923 YI30001-004	N	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2	
Z2-12_0923 YI30001-004	N	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2	
Z2-36_0923 YI30001-006	N	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2	
Z2-36_0923 YI30001-006	N	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2	

Table of All Qualified Results

Test Method: SW8260D		Extraction Method: SW5030B								
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason		
Z2-36_0923 YI30001-006	Ν	cis-1,2-Dichloroethene	1.00	1.50	1.50 J	-	ug/l	V2		
Z2-36_0923 YI30001-006	Ν	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-45_0923 YI30001-011	Ν	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2		
Z2-45_0923 YI30001-011	Ν	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2		
Z2-45_0923 YI30001-011	Ν	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-45_0923 YI30001-011	Ν	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-45_0923 YI30001-011	Ν	trans-1,2-Dichloroethene	1.00	0.810	0.810 J	+	ug/l	I/TR		
Z2-45_0923 YI30001-011	Ν	Vinyl chloride	1.00	26.0	26.0 J	+	ug/l	I		
Z2-45_0923-a YI30001-012	FD	1,1-Dichloroethane	1.00	0.800	0.800 UJ		ug/l	C/V2		
Z2-45_0923-a YI30001-012	FD	Chloroform	1.00	0.800	0.800 UJ		ug/l	C/V2		
Z2-45_0923-a YI30001-012	FD	cis-1,2-Dichloroethene	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-45_0923-a YI30001-012	FD	Cyclohexane	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-50_0923 YI30001-013	Ν	1,2,4-Trichlorobenzene	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-50_0923 YI30001-013	Ν	Acetone	20.0	10.0	10.0 UJ		ug/l	V1/V2		
Z2-50_0923 YI30001-013	Ν	Bromoform	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-52R_0923 YI30001-014	Ν	1,2,4-Trichlorobenzene	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-52R_0923 YI30001-014	Ν	Acetone	20.0	10.0	10.0 UJ		ug/l	V1/V2		
Z2-52R_0923 YI30001-014	Ν	Bromoform	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-53_0923 YI30001-015	Ν	1,2,4-Trichlorobenzene	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-53_0923 YI30001-015	Ν	Acetone	20.0	10.0	10.0 UJ		ug/l	V1/V2		
Z2-53_0923 YI30001-015	Ν	Bromoform	1.00	0.800	0.800 UJ		ug/l	V2		
Z2-T3_0923 /I30001-007	Ν	Tetrachloroethene (PCE)	1.00	0.470	0.470 J	+	ug/l	I/TR		
Z2-T3_0923 /I30001-007	Ν	Trichloroethene (TCE)	1.00	0.600	0.600 J	+	ug/l	I/TR		

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ. Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
С	LCS Recovery
I	Surrogate recovery outside project limits.
М	MS Recovery
TR	Trace Level Detect
V1	ICV
V2	CCV
Z	LCS RPD

Flag Code and Definitions

Flag	Definition					
J	Estimated Value					
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.					
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.					
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.					
U	Undetected: The analyte was analyzed for, but not detected.					
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.					
Х	Result may require rejection; PDT attention required					

Bias	
-	The result may be biased low
+	The result may be biased high
Note - Th	e bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Method: BNASIME (GC/MS-SIM Analysis by SW8270E)				
Review Questions	Yes	No	NA	Comment
Were there discrepancies between the COC and the samples received?		•		
Were there discrepancies between the COC and the sample labels?		•		
Were samples relinquished properly on the COC?	•			
Were all samples properly preserved?	•			
Were sampling dates/times, date and time of laboratory receipt of samples, and sample conditions upon receipt at the laboratory (including preservation, pH, and temperature) documented?	•			
Were sample results reported with percent moisture correction if required?			•	
Were analytical methods performed and analysis dates present?	•			
Were all requested target analytes reported?	•			
Were QAPP specified Project Quantitation Limit Goals achieved? (The laboratory LOQ is compared to the QAPP Project Quantitation Goal)		•		Various compounds are reported with detections and non-detects at levels (LOQs) greater than the project PQGs; however, all raised PALs had detections associated.
Were holding times met?	•			
Were trip blanks analyzed at the proper frequency and in control?			•	
Were field blanks analyzed at the proper frequency and in control?			•	
Were equipment blanks analyzed at the proper frequency and in control?			•	
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than DL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?		•		LCS only.
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		See QC outliers.
Was the MS/MSD RPD within project acceptance limits?	•			
If ISM ws used for sample collection, were laboratory triplicates analyzed and within project acceptance limits?			•	
Were surrogate recoveries within project acceptance limits?	•			
Were field replicates (duplicates, triplicates, etc.) analyzed at the proper frequency and in control?	•			
Were reported sample concentrations within calibration range?	•			
Was the GC/MS system properly tuned based on method criteria?	•			
Was instrument tuning completed every 12 hours during sample analysis?	•			
Was the Calibration within project acceptance criteria?	•			

Review Questions	Yes	No	NA	Comment
Was a ICV performed after each ICAL prior to sample analysis and within project acceptance criteria?	•			
Were CCVs run at the required frequency and within project acceptance criteria?	•			
Were internal standard retention times and area criteria within project acceptance criteria?	•			
Were internal standards spiked for every sample, standard, and QC sample?	•			
Were instrument run logs present and filled out appropriately?	•			
Were sample preparation sheets present and filled out appropriately?	•			
Were certificates of standard traceability and documentation of standard solution preparation provided?		•		Lot numbers and expiration dates provided for standards/reagents, but no certificates for traceability provided. No further action.
Were recalculation of QC Elements and Sample Results performed?	•			
Were Relative Retention Times (RRTs) within ± 0.06 RRT units (may be updated based on daily CCV)?	•			
Were chromatograms checked for peak integration? (10% of automated integration and 100% of manual integrations)	•			
Were chromatograms checked for correct baseline/peak integration and possible interferences?	•			
Were qualitative ion mass present?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for exclusion in the data validation process?		•		

Review Questions	Yes	No	NA	Comment
Were there discrepancies between the COC and the samples received?		•		
Were there discrepancies between the COC and the sample labels?		•		
Were samples relinquished properly on the COC?	•			
Were all samples properly preserved?	•			
Were sampling dates/times, date and time of laboratory receipt of samples, and sample conditions upon receipt at the laboratory (including preservation, pH, and temperature) documented?	•			
Were sample results reported with percent moisture correction if required?			•	
Were analytical methods performed and analysis dates present?	•			
Were all requested target analytes reported?	•			
Were QAPP specified Project Quantitation Limit Goals achieved? (The laboratory LOQ is compared to the QAPP Project Quantitation Goal)		•		There were instances where compounds were reported with PQLs greater than project requirements; however, these had associated non-detections.
Were holding times met?	•			
Were trip blanks analyzed at the proper frequency and in control?			•	
Were field blanks analyzed at the proper frequency and in control?			•	
Were equipment blanks analyzed at the proper frequency and in control?			•	
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than DL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?		•		LCS only.
Were LCS/LCSD recoveries within project acceptance limits?		•		See QC outliers.
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If ISM ws used for sample collection, were laboratory triplicates analyzed and within project acceptance limits?			•	
Were surrogate recoveries within project acceptance limits?	•			
Were field replicates (duplicates, triplicates, etc.) analyzed at the proper frequency and in control?	•			
Were reported sample concentrations within calibration range?	•			
Were Instrument Performace Checks (Degradation Checks) performed and within acceptace criteria?	•			It was noted PEM was not conducted every 12 hours; however meets method requirements. No action taken on this basis.
Was the Calibration within project acceptance criteria?	•			
Was a ICV performed after each ICAL prior to sample analysis and within project acceptance criteria?	•			
eQAPP Version: eQAPP_CHRTN-CHRTN-LTM-PHASE.000000				

Review Questions	Yes	No	NA	Comment
Were CCVs run at the required frequency and within project acceptance criteria?	•			
Were internal standard retention times and area criteria within method requirements?			•	
Were internal standards spiked for every sample, standard, and QC sample?			•	
Were instrument run logs present and filled out appropriately?	•			
Were sample preparation sheets present and filled out appropriately?	•			
Was a Cleanup Procedure required (Cleanup Recovery Checks) verified and within acceptance limits?			•	
Was a Second Column/Detector used and the column difference within acceptance limits?	•			All samples Non-detect. Column RPD confirm on QC samples.
Were certificates of standard traceability and documentation of standard solution preparation provided?		•		Lot numbers and expiration dates provided for standards/reagents, but no certificates for traceability provided. No further action.
Were recalculation of QC Elements and Sample Results performed?	•			
For internal standard calibration, were Relative Retention Times (RRTs) within ± 0.06 RRT units and updated with the latest daily CCV?			•	
Were chromatograms checked for peak integration when manually integrated?	•			
Were chromatograms checked for correct baseline/peak integration and possible interferences?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?		•		LCS out of control high and samples not re- extracted/re-analyzed. All associated results were non-detect; therefore results were reported without bias following project guidelines. In addition,
Were any data recommended for exclusion in the data validation process?		•		

Review Questions	Yes	No	NA	Comment
Vere there discrepancies between the COC and the amples received?		•		
Vere there discrepancies between the COC and the ample labels?		•		
Vere samples relinquished properly on the COC?	•			
Vere all samples properly preserved?	•			
Vere sampling dates/times, date and time of laboratory eceipt of samples, and sample conditions upon receipt t the laboratory (including preservation, pH, and emperature) documented?	•			
Vere sample results reported with percent moisture orrection if required?			•	
Vere analytical methods performed and analysis dates resent?	•			
Vere all requested target analytes reported?	•			
Vere QAPP specified Project Quantitation Limit Goals chieved? (The laboratory LOQ is compared to the QAPP Project Quantitation Goal)		•		There were instances where compounds were reported with PQLs greater than project requirements; however, these had both detections and non-detections associated.
Vere holding times met?	•			
Vere trip blanks analyzed at the proper frequency and in ontrol?	•			
Vere field blanks analyzed at the proper frequency and n control?			•	
Vere equipment blanks analyzed at the proper frequency nd in control?			•	
Vas a method blank prepared and analyzed with each atch?	•			
Vere target analytes in the method blank less than DL?	•			
Vas an LCS/LCSD pair prepared and analyzed with each atch?		•		2 of 5 batches were prepared with an LCS pair. The remaining batches were prepared with an LCS only.
Vere LCS/LCSD recoveries within project acceptance mits?		•		See QC outliers.
Vas the LCS/LCSD RPD within project acceptance mits?		•		See QC outliers.
Vas a MS/MSD pair prepared with each batch?		•		No project-specific MS/MSD included in this method.
Vere MS/MSD recoveries within project acceptance mits?			•	
Vas the MS/MSD RPD within project acceptance limits?			•	
ISM ws used for sample collection, were laboratory iplicates analyzed and within project acceptance limits?			•	
Vere surrogate recoveries within project acceptance mits?		•		See QC outliers.
Vere field replicates (duplicates, triplicates, etc.) nalyzed at the proper frequency and in control?	•			
Vere reported sample concentrations within calibration ange?	•			
Vas the GC/MS system properly tuned based on method riteria?	•			

Review Questions	Yes	No	NA	Comment
Was the Calibration within project acceptance criteria?	•			
Was a ICV performed after each ICAL prior to sample analysis and within project acceptance criteria?		•		See QC outliers. ICV form does not contain RF; therefore, not reviewed. In addition, 170928A13_ICV was biased high for Dichlorodifluoromethane. All associated results were non-detect. No action taken on this basis.
Were CCVs run at the required frequency and within project acceptance criteria?		•		See QC outliers. In addition, it was noted various analytes out of control both with high and low bias; however no results reported from analytical run. No action taken on this basis.
Were internal standard retention times and area criteria within project acceptance criteria?	•			
Were internal standards spiked for every sample, standard, and QC sample?	•			
Were instrument run logs present and filled out appropriately?	•			
Were sample preparation sheets present and filled out appropriately?			•	
Were certificates of standard traceability and documentation of standard solution preparation provided?		•		Lot numbers and expiration dates provided for standards/reagents, but no certificates for traceability provided. No further action.
Were recalculation of QC Elements and Sample Results performed?	•			
Were Relative Retention Times (RRTs) within ± 0.06 RRT units (may be updated based on daily CCV)?	•			
Were chromatograms checked for peak integration? (10% of automated integration and 100% of manual integrations)	•			
Were chromatograms checked for correct baseline/peak integration and possible interferences?	•			
Were qualitative ion mass present?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?		•		CCV out of control and not all samples reanalyzed. All results were qualified according to DoD and project guidelines where non- conformities occurred.
Were any data recommended for exclusion in the data validation process?		•		conformities occurred.

GC/MS VALIDATION WORKSHEET INSTRUMENT PERFORMANCE CHECK

SDG #: YI30001 Lab: Pace Client: Bhate Date: 4/9/2024 Page: 1 of 1 Validated by: JT Second Review by: KC

Method: 8260

Tune ID: Recalculated Ion Ratio: Reported Ratio:		1.D p. 742
Relative Abundance (Ion Ratio) =		<u>of Target Mass</u> X 100 of Reference Mass
Target Mass Response = Reference Mass Response =		р. 743 р. 743
Relative Abundance =	88.6%	Match

Comments:

GC/MS VALIDATION WORKSHEET INITIAL CALIBRATION

SDG #: YI30001 Lab: Pace Client: Bhate

Method: 8260

Date: 4/9/2024 Page: 1 of 1 Validated by: JT Second Review by: KC

RRF Standard ID (LVL 1): Compound ID: Reported Result: RRF = <u>Compou</u> I.S. Area	Chlorometh 0.290870	ane <i>p. 290</i> S. Conc.	
Compound Area =		p. 304	
		p. 305 I.S. =	Pentafluorobenzene
Compound Conc. =		p. 304	
I.S. Conc. =	50.0	p. 305	
RRF =	0.290870	Match	
Calibration ID: Compound ID: %RSD: Average RRF =	Vinyl chlorid 8.8%		
%RSD =	Standard De	<u>eviation</u> X 100	
	Average F		
RF Level 1 =	•		0.269513
RF Level 2 =		RF Level 7 =	
RF Level 3 =	0.226462	RF Level 8 =	
RF Level 4 =	0.257994	RF Level 9 =	
RF Level 5 =	0.272209	RF Level 10 =	
Standard Deviation = Average RRF = %RSD =	0.264063	Match Match	

GC/MS VALIDATION WORKSHEET INITIAL/CONTINUING CALIBRATION VERIFICATION

SDG #: YI30001 Lab: Pace Client: Bhate Date: 4/9/2024 Page: 1 of 1 Validated by: JT Second Review by: KC

Method: 8260

% Recovery =	Conc. ICV	Found × 100 Conc.	
ICV Standard ID: Analyte ID: <u>Reported</u> %Recovery:	Dichlorodiflue	promethane pg 397	Aqueous
Spike Conc.: Found Conc.:		pg 397 pg 397	
<u>Calculated</u> %Recovery =	123%	Match	
%D Standard ID: Compound ID: Reported %D: %D = <u>Average RRF</u>	Chlorometha 5.1%	p. 591	
Average	RRF		
Average RRF = CCV RRF =		p. 591 p. 591	
%D =	5.1%	Match	

Comments: ICV RRF was not reported by the lab.

GC/MS VALIDATION WORKSHEET SURROGATE SPIKES/SYSTEM MONITORING COMPOUNDS - WATER SAMPLES

SDG #: YI30001 Lab: Pace Client: Bhate Date: 4/9/2024 Page: 1 of 1 Validated by: JT Second Review by: KC

Method: 8260

Lab ID : Compound ID: Reported Result:	Toluene-d8	3 / YI30001-002 3 p. 158
% Recovery =	<u>Conc. Surr</u> Conc. Su	<u>. In Sample X</u> 100 rr. Spiked
Conc. In Sample = Surr. Spike Conc. =		р. 160 р 301
% Recovery =	103%	Match

Comments:

GC/MS VALIDATION WORKSHEET LABORATORY CONTROL SAMPLES

SDG #: YI30001 Lab: Pace Client: Bhate Date: 4/9/2024 Page: 1 of 1 Validated by: JT Second Review by: KC

Method: 8260

Sample ID: Compound ID: Recovery:	Benzene	9	
% Recovery =		CSX 100 ke Conc.	
Conc. LCS = LCS Spike Conc. =		-	
% Recovery =	102%	Match	
Compound ID:			
RPD = <u> LCS Conc LCSD Conc. </u> X 100 (LCS Conc. + LCSD Conc.)/2			
LCS Conc. = LCSD Conc. =		р. 116 р. 118	
RPD =	1.9%	Match	

Comments: LCS only.

GC/MS VALIDATION WORKSHEET TARGET COMPOUND QUANTITATION

SDG #: YI30001 Lab: EMAX Client: Arcadis Date: 4/9/2024 Page: 1 of 1 Validated by: JT Second Review by: KC

Method: 8260

Sample ID: Compound ID: Reported Result (ug/L):	· · · · ·	-	02	
Conc. In Sample =	<u>Area Cmpd. I</u> Area of I.			(<u>Final Volume</u> X Dilution Factor Initial Amount
		Units		
Area Sample =	116135	Area	р. 159	
Area I.S. =	951621	Area	<i>р.</i> 159 І.	S = Pentafluorobenzene
Conc. I.S. =	50.0	ug/L	р. 159	
Average RRF =	0.542882	NA	p. 409	
Final Volume =	5.00	mL	direct injectio	n
Initial Amount =	5.00	mL	direct injectio	n
Dilution Factor =	1.0	NA	p. 157	
Conc. In Sample =	11	Match		

SDG #:YI30001Lab:Pace AnalyticalClient:BhateMatrix:Water

Date: 09 Apr 24

Validated by: JT Second Review by: KC

CALCULATIONS

Calibration Factor (CF) = <u>Instrument Response (Peak Height)</u> Analyte Conc (ng)

> %RSD = <u>Standard Deviation</u> × 100% Average CF

ICAL of Multicomponent Analyte

Selected Peak :

Calibration ID: ICAL gc7.i 31-Jul-2023 Calibration Date: 31-Jul-2023 14:01 Peak #: 5 Analyte: Aldrin Instrument / Column: gc7.i

	ICAL Results for Column (1):			ICAL Resu	ICAL Results for Column (2):			
Reported	A	verage CF:	96977727	p. 1082	Average CF:	213815944	p. 1083	
<u>Reported</u>		%RSD:	14.4%	p. 1082	%RSD:	14.7%	p. 1083	
			Reported	Calc'd			Reported	Calc'd
	Conc (ng)	Peak Ht,	CF	CF	Conc (ng)	Peak Ht,	CF	CF
Level 1:	0.005	389157	77831400	77831400	0.005	837901	167580200	167580200
Level 2:	0.01	1167145	116714500	116714500	0.01	2.55E+06	254808600	254808600
Level 3:	0.02	1974790	98739500	98739500	0.02	4.34E+06	217230400	217230400
Level 4:	0.05	4658614	93172280	93172280	0.05	1.03E+07	206391800	206391800
Level 5:	0.2	19686191	98430955	98430955	0.2	4.46E+07	223068720	223068720
	р. 1085	p. 1085	p. 1082	Match	p. 1086	р. 1086	p. 1083	Match
				-				
Calculated	Avg CF	(Peak #2) =	96977727	Match	Avg CF	(Peak #2) =	213815944	Match
	Standard	Deviation =	13926765.5	-	Standard	Deviation =	31506079.4	
Calculated		%RSD =	14.4%	Match		%RSD =	14.7%	Match

S4VEM INITIAL / CONTINUING CALIBRATION VERIFICATION Pesticides - SW 8081B

Date: 09 Apr 24

SDG #: YI30001 Lab: Pace Analytical Client: Bhate

Matrix: Water

Validated by: JT Second Review by: KC

CALCULATIONS

%D = 100% × (Found Conc - True Conc) / True Conc

<u>ICV:</u>	[a] ICV ID: Analyte: Instrument / Column:		3607	
Reported	%D:	-9.4%	_ p. 1173	
	True Conc (Spike): Found Conc:			
<u>Calculated</u>	%D =	-9.4%	_ Match	
<u>CCV:</u>		CCV SVGC	C-3610	
	Analyte: Instrument / Column:	Dieldrin gc7.i		
<u>Reported</u>	Instrument / Column:		_ p. 1185	
<u>Reported</u>	Instrument / Column:	gc7.i -27.2% 0.02	-	

S4VEM SURROGATE SPIKES / SYSTEM MONITORING COMPOUNDS Pesticides - SW 8081B

SDG #:YI30001Lab:Pace AnalyticalClient:BhateMatrix:Water

Date: 09 Apr 24

Validated by: JT

Second Review by: KC

CALCULATIONS

%Recovery =	<u>Conc Surr.</u> Conc Surr	<u>In Sample</u> × 100% . Spiked
Sample ID: Analyte (Surrogate):	—	3 / YI30001-001 -m-xylene-D1
Reported %Recovery:	93.0%	p. 1076
Surr. Spike Conc: Reported Conc:		р 1077 р 1077
Calculated %Recovery =	92.7%	Match

S4VEM LABORATORY CONTROL SAMPLE Pesticides - SW 8081B

SDG #:YI30001Lab:Pace AnalyticalClient:BhateMatrix:Water

Date: 09 Apr 24

Validated by: JT Second Review by: KC

CALCULATIONS

Verifying %Recovery:	%Recovery =	<u>Conc LCS</u> LCS Spike C		No LCSD	
	LCS Sample ID: Analyte:	YQ86402-00 alpha-BHC	2		
Reported	%Recovery:	98%	p. 1253		
	LCS Spike Conc: Conc LCS:		p. 1253 o1254		
Calculated	%Recovery =	98%	Match		

S4VEM SAMPLE RESULT VERIFICATION Pesticides - SW 8081B

SDG #: YI30001 Lab: Pace Analytical Client: Bhate Matrix: Water Date: 09 Apr 24

Validated by: JT

Second Review by: KC

CALCULATIONS

<u>Sample Result</u>	Sample Conc (µg/L) = <u>Peak Height</u> × <u>Final Volume</u> × Dilution Factor ICAL Avg. CF Initial Amount
	Sample ID: Analyte:
<u>Reported</u>	Sample Conc (µg/L):
Reported	Raw Conc (µg/L):
Se	lected Column for Reported Result: Calibration Average CF: Height: Final Volume (mL): Initial Amount (mL): Dilution Factor: 1
<u>Calculated</u>	Raw Conc (μg/L) = #DIV/0!
<u>Calculated</u>	Sample Conc (µg/L) = #DIV/0!

S4VEM **INSTRUMENT PERFORMANCE CHECK** BNASIM

YI30001 SDG #: Pace Analytical Lab: Client: Bhate Matrix: Water

Validated by: JT Second Review by: KC

CALCULATIONS

	Tune ID: Recalculated Ion Ratio:	20101101.d 441:443	
<u>Reported</u>	Relative Abundance:	75.7%	p. 871
Relative	Abundance (Ion Ratio) =		<u>e of Target Mass</u> × 100% f Reference Mass
0	t Mass Response (441): Mass Response (443):		р. 997 р. 997
Calculated	Relative Abundance =	75.7%	Match

S4VEM INITIAL CALIBRATION BNASIM

SDG #:YI30001Lab:Pace AnalyticalClient:BhateMatrix:Water

Validated by: JT Second Review by: KC

CALCULATIONS

Verifying a single RRF result:	RRF = <u>Analyte Res</u> ISTD Resp.	<u>sp. × ISTD C</u> . × Analyte C		
	RRF Standard ID: Calibration Level: Analyte: ISTD:	LVL 5	ne	
Reported	Calibration RRF:	1.136926	_p. 936	
	Analyte Response: ISTD Response: Analyte Conc. (ng/uL): ISTD Conc. (ng/uL):	47374 1.6	р. 939 р. 954 р. 939 р. 954	
<u>Calculated</u>	Calibration RRF =	1.136926	_Match	
Verifying Avg. RRF and %RSD:	%RSD = <u>Standard D</u> Average I Analyte:			
Reported	Average RRF:	1.141752	_ p. 936	
<u>Reported</u>	%RSD:	2.4%	_ p. 936	
	RRF: LvI 1: 1.154710 LvI 2: 1.172820 LvI 3: 1.145437 LvI 4: 1.098868 LvI 5: 1.136926 Standard Deviation =	Lvi 6: Lvi 7: Lvi 8: Lvi 9: Lvi 10: 0.027		
<u>Calculated</u>	Average RRF =	1.141752	_Match	

Date: 09 Apr 2024

Validated by: JT

Matrix:	Water				Second Review by: KC
%D =	100% × (CV RRF	- Avg RRF) / Avg RRF		RRF =	 Analyte Resp. × ISTD Conc. ISTD Resp. × Analyte Conc.
<u>ICV:</u>		Analyte:	ICV 20101 Naphthaler Naphthaler	ne	
	Reported Reported	ICV RRF: %D:	1.092028 -4.4%	р. 957 р. 957	
		Analyte Response: ISTD Response: Analyte Conc.: ISTD Conc.: Average RRF (ICAL):	40857 0.4 0.4	р. 958 р. 958 р. 958 р. 958 р. 957	
	Calculated Calculated	ICV RRF = %D =	1.092028 -4.4%	_Match _Match	
<u>CCV:</u>		Analyte:	CCV 2010 [.] Naphthaler Naphthaler	ne	
	Reported Reported	CCV RRF: %D:	<u>1.099006</u> -3.7%	_ р. 968 _ р. 968	
		Analyte Response: ISTD Response: Analyte Conc.: ISTD Conc.: Average RRF (ICAL):	46886 0.4 0.4	p. 969 p. 969 p. 969 p. 969 p. 969 p. 968	
	Calculated Calculated	CCV RRF = %D =	<u>1.099006</u> -3.7%	_Match _Match	

Comments:

SDG #:

Lab:

Client:

YI30001

Bhate

Pace Analytical

S4VEM LABORATORY CONTROL SAMPLE BNASIM

SDG #:YI30001Lab:Pace AnalyticalClient:BhateMatrix:Water

Validated by: JT

Second Review by: KC

CALCULATIONS

Verifying %Recovery:	%Recovery =	<u>Conc. LC</u> LCS Spike	<u>S</u> × 100% Conc.
	LCS Sample ID: Analyte:	YQ86383-0 Pentachloro	
<u>Reported</u>	%Recovery:	134%	p. 867
	LCS Spike Conc.: Conc. LCS:		р. 867 р. 867
<u>Calculated</u>	%Recovery =	135%	Match

Comments: LCS only.

SDG #:YI30001Lab:Pace AnalyticalClient:BhateMatrix:Water

Date: 09 Apr 2024

Validated by: JT

Second Review by: KC

CALCULATIONS

	%Recovery =	<u>Conc. Surr.</u> Conc. Sur	<u>In Sample</u> × 100% r. Spiked
	Sample ID: Analyte (Surrogate):	_	3 / YI30001-001 ne-d10
Reported	%Recovery:	92.0%	p. 888
	Surr. Spike Conc.: Reported Conc.: Corrected for Dilution:	0.53851	p 939 p. 889
Calculated	%Recovery =	92%	Match

S4VEM SAMPLE RESULT VERIFICATION BNASIM

Date: 09 Apr 2024

Validated by: JT

Second Review by: KC

CALCULATIONS

Sample Conc. (µg/L) :	• •	<u>ISTD Conc.</u> Average RRF	× <u>Final Volume</u> × <u>Dilution Factor</u> Initial Amount
	Sample ID: Analyte: ISTD:	Naphthaler	
<u>Reported</u>	Sample Conc. (µg/L):	32	_ р. 927
	Analyte Response: ISTD Response: ISTD Conc. (μg/L): Average RRF (ICAL): Final Volume (mL): Initial Amount (ml): Dilution Factor:	67824 0.4 1.141752 1 620	p. 928 p. 928 p. 928 p. 936 p. 928 p. 928 p. 928
<u>Calculated</u>	Sample Conc. (µg/L):	32	Match
	Sample ID: Analyte: ISTD:	Naphthaler	
Reported	Sample Conc. (µg/L):	30	_p 931
	Analyte Response: ISTD Response: ISTD Conc. (μg/L): Average RRF (ICAL): Final Volume (mL): Initial Amount (ml): Dilution Factor:	58878 0.4 1.141752 1 630	p 932 p 932 p 932 p. 936 p 932 p 932 p 932 p 932
<u>Calculated</u>	Sample Conc. (µg/L):	30	Match

Comments:

SDG #:

Matrix:

-

Lab: Client: YI30001

Bhate

Water

Pace Analytical

Facility:	Joint Base Charleston Air, Long Term Monitoring
Event:	2024 TU544 Replacement Well Sampling
SDG:	ZD22015
Guidance Document:	CHRTN UFP-QAPP
Prime Contractor:	Bhate Environmental Associates, Inc., Birmingham, AL
Project Manager:	Frank Gardner
Contract Laboratory(ies):	Pace Analytical Services, LLC, West Columbia, SC
Data Review Contractor:	Synectics, Sacramento, CA
Data Review Level:	S2BVEM
Primary Data Reviewer:	Kathryn Cantone, Data Review Chemist
Second Reviewer:	Evin McKinney, Senior Scientist
Date Submitted:	May 15, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	BNASIME	SW8260D
TU544_MW-1R-129_0424	ZD22015-001	Water	Field Sample/N	Х	Х
TU544_MW-1R-129_0424-a	ZD22015-002	Water	Field Duplicate/FD	Х	Х
TU544_MW-1R-129_0424-C	ZD22015-003	Water	Trip Blank/TB		Х

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at S2BVEM data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the CHRTN UFP-QAPP and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Bhate Environmental Associates, Inc., Birmingham, AL; analyses were performed by Pace Analytical Services, LLC, West Columbia, SC and were reported under sample delivery group (SDG) ZD22015. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Field Duplicate RPD Lab Blank LCS Recovery MS Recovery MS RPD Prep Hold Time Surrogate Test Hold Time Trip Blank Sults of the ADR proc

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 0 results (0.00%) out of the 5 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
BNASIME	No additional comments; see Checklist for detail.
SW8260D	No additional comments; see Checklist for detail.

May 14, 2024

Reviewed by Kathryn Cantone, Data Review Chemist, Synectics, Sacramento, CA

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Evin Mckinney

Reviewed by Evin McKinney, Senior Scientist, Synectics, Sacramento, CA

May 15, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method BNASIME, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
TU544_MW-1R-129_0424-MS (MS) ZD22015-001MS	Naphthalene	-50.0	43 - 114	10 - 114	percent	J/UJ	Μ	Spike amount Insignificant
TU544_MW-1R-129_0424-MS (MS) ZD22015-001MS	Naphthalene	0.00	43 - 114	10 - 114	percent	J/UJ	М	Spike amount Insignificant
TU544_MW-1R-129_0424- MSD (SD) ZD22015-001MD	Naphthalene	0.00	43 - 114	10 - 114	percent	J/UJ	Μ	Spike amount Insignificant

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8260D, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
TU544_MW-1R-129_0424-MS (MS) ZD22015-001MS	Naphthalene	50.0	61 - 128	10 - 128	percent	J/UJ	Μ	Spike amount Insignificant
TU544_MW-1R-129_0424-MS (MS) ZD22015-001MS	Naphthalene	60.0	61 - 128	10 - 128	percent	J/UJ	М	Spike amount Insignificant

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Qualified Results

No results associated with this sample delivery group required qualification.

Reason Code Definitions

Code	Definition
Μ	MS Recovery

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
Х	Result may require rejection; PDT attention required

Bias

-	The result may be biased low
+	The result may be biased high
Note -	The bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Method: BNASIME (GC/MS-SIM Analysis by SW8270E)				
Review Questions	Yes	No	NA	Comment
Were there discrepancies between the COC and the samples received?		•		
Were there discrepancies between the COC and the sample labels?		•		
Were samples relinquished properly on the COC?	•			
Were all samples properly preserved?	•			
Were sampling dates/times, date and time of laboratory receipt of samples, and sample conditions upon receipt at the laboratory (including preservation, pH, and temperature) documented?	•			
Were sample results reported with percent moisture correction if required?			•	
Were analytical methods performed and analysis dates present?	•			
Were all requested target analytes reported?	•			
Were QAPP specified Project Quantitation Limit Goals achieved? (The laboratory LOQ is compared to the QAPP Project Quantitation Goal)		•		Naphthalene was detected with a level (LOQ) greater than the project PQG due to dilution. Additionally, it was noted that LOQ was greater than project PALs
Were holding times met?	•			
Were trip blanks analyzed at the proper frequency and in control?			•	
Were field blanks analyzed at the proper frequency and in control?			•	
Were equipment blanks analyzed at the proper frequency and in control?			•	
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than DL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?		•		LCS only.
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		See QC outliers.
Was the MS/MSD RPD within project acceptance limits?	•			
If ISM ws used for sample collection, were laboratory triplicates analyzed and within project acceptance limits?			•	
Were surrogate recoveries within project acceptance limits?	•			
Were field replicates (duplicates, triplicates, etc.) analyzed at the proper frequency and in control?	•			
Were reported sample concentrations within calibration range?	•			
Was the GC/MS system properly tuned based on method criteria?	•			
Was instrument tuning completed every 12 hours during sample analysis?	•			
Was the Calibration within project acceptance criteria?	•			

Method: BNASIME (GC/MS-SIM Analysis by SW8270E)				
Review Questions	Yes	No	NA	Comment
Was a ICV performed after each ICAL prior to sample analysis and within project acceptance criteria?	•			
Were CCVs run at the required frequency and within project acceptance criteria?	•			
Were internal standard retention times and area criteria within project acceptance criteria?	•			
Were internal standards spiked for every sample, standard, and QC sample?	•			
Were instrument run logs present and filled out appropriately?	•			
Were sample preparation sheets present and filled out appropriately?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for exclusion in the data validation process?		•		

Review Questions	Yes	No	NA	Comment
Were there discrepancies between the COC and the samples received?		•		
Were there discrepancies between the COC and the sample labels?		•		
Were samples relinquished properly on the COC?	•			
Were all samples properly preserved?	•			
Were sampling dates/times, date and time of laboratory receipt of samples, and sample conditions upon receipt at the laboratory (including preservation, pH, and temperature) documented?	•			
Were sample results reported with percent moisture correction if required?			•	
Were analytical methods performed and analysis dates present?	•			
Were all requested target analytes reported?	•			
Were QAPP specified Project Quantitation Limit Goals achieved? (The laboratory LOQ is compared to the QAPP Project Quantitation Goal)	•			
Were holding times met?	•			
Were trip blanks analyzed at the proper frequency and in control?	•			
Were field blanks analyzed at the proper frequency and in control?			•	
Were equipment blanks analyzed at the proper frequency and in control?			•	
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than DL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?		•		LCS only.
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a MS/MSD pair prepared with each batch?		•		1 of 2 batches prepared with a project-specific MS/MSD.
Were MS/MSD recoveries within project acceptance limits?		•		See QC outliers.
Was the MS/MSD RPD within project acceptance limits?	•			
If ISM ws used for sample collection, were laboratory triplicates analyzed and within project acceptance limits?			•	
Were surrogate recoveries within project acceptance limits?			•	
Were field replicates (duplicates, triplicates, etc.) analyzed at the proper frequency and in control?	•			
Were reported sample concentrations within calibration range?	•			
Was the GC/MS system properly tuned based on method criteria?	•			
Was instrument tuning completed every 12 hours during sample analysis?	•			
Was the Calibration within project acceptance criteria?	•			

Method: SW8260D (Volatile Organic Compounds by GC/N	IS)			
Review Questions	Yes	No	NA	Comment
Was a ICV performed after each ICAL prior to sample analysis and within project acceptance criteria?	•			
Were CCVs run at the required frequency and within project acceptance criteria?	•			
Were internal standard retention times and area criteria within project acceptance criteria?	•			
Were internal standards spiked for every sample, standard, and QC sample?	•			
Were instrument run logs present and filled out appropriately?	•			
Were sample preparation sheets present and filled out appropriately?			•	
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for exclusion in the data validation process?		•		

Attachment 5

Field Notes, Well Diagram, Well Installation, and Well Abandonment Forms

	hat	—	
			L CONSTRUCTION DIAGRAM (Flush Mount)
SITE:	JBCA	WELL/BORING ID:	MW-1R-129
PROJECT NAME:	TU544 Well Replacement	DRILLING METHOD	
PROJECT NO.:	SAS2300.100		3/25/2024
DRILLING CONTRACTO			
DRILLER:	Randy Brand	NORTHING (NAD 8	3):
SCIENTIST:	P. Bambach	EASTING (NAD 83)	
1		PROTECTIV	VE CASING
NOT TO SCALE		/ Type:	None
		Dimensions:	
l		Length:	NA
Surface Elevation (NGVD	0 29): NM		
,			Existing Surface
	///////////////////////////////////////	SURFACE F	PAD
Casing Elevation:		Dimensions:	<u>2X2</u>
(Relative to estimated be	nchmark)	Туре:	Concrete (Flush Mount)
x .			
Borehole Diameter (in):	4.25	WELL CAS	ING (RISER)
Well Casing Diameter (in)		Manufacture	· · · ·
-		Type/Materia	
i i		Diameter (in	
		Connection:	
i i		WELL SCR	
		Manufacture	
		Type/Materia	
l		Slot Size (in	
l l		Slot Size (in Slot Type:): 0.010 Factory Slot
l		Slot Type: Connection:	
i			Flush i nread
l			~~~~
l		ANNULAR S	
i		Type: Mapufacture	Bentonite
l		Manufacture Mud Scale:	er: Benseal
1		Mud Scale:	O
T C Dentonito Soal:	0.5	Installation:	Gravity
Top of Bentonite Seal:	0.5		
T Ster Dook	2.5		
Top of Filter Pack:	2.5	BENTONITE Manufacture	
	3.5	Manufacture	
Top of Screen:	3.5	Product Nan	
SCOTU TO WATER		Size: Installation:	Granular Gravity
DEPTH TO WATER	20		Gravity
During Drilling: Date	2.9 25-Mar-2		
Date	∠J⁼iviai '∠		
- Distribution	3		
Post Development:	3. 18-Apr-2	Manufacture Product Nan	er: DSI me: Filter Sil Industrial Quartz
Date	- יאירטו	Product Nan Size:	me: Filter Sil Industrial Quartz #2 Gravel
1			
- the of Coroon	12 50	Installation:	Gravity
Bottom of Screen:	13.50		
Bottom of Well:	13.90	SUMP/END	
1		Туре:	Flush cap
1		Length:	4"
Borehole Depth:	17.0		
1		BACKFILL	MATERIAL
1		Туре:	Grout
l		Volume:	To land surface
		licable, NM = not measured; PVC = polyvinyl chloric	

Mohec	2600 Bull S		Vater Well Record Note: Personal information Bureau of Water umbia, SC 29201-1708; (803) 898-4300 or release.
1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: UMW-29720 UST PERMIT # 16344
Name: RHINE ELIZABETH (BHATE ENV.) (last) (first) Address: 1608 13TH AVE. SOUTH			8. USE:
City: BIRMNGHAM State: AL Zip: 35205-0000			☐ Residential ☐ Fable Cupply ☐ Freedow ☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☑ Monitor Well ☐ Replacement
Telephone: Work: (864) 982-9890 Home: 2. LOCATION OF WELL: SC COUNTY: CHARLESTON			9. WELL DEPTH (completed) Date Started: 3/25/2024 16.0 ft. Date Completed: 3/25/2024
Name: BUILDING 129 JBCA			10. CASING: Threaded Welded
Street Address: 103 SOUTH GRAVES AVE ^{City:} NORTH CHARLESTON ^{Zip:} 29404-0000			Diam Height: Above/Below Type: PVC Galvanized Surfaceft. Steel Other WeightIb./ft.
Latitude: 32,896670 Longitude: -80.052358			
3. PUBLIC SYSTEM NAME: I MW-1-129	PUBLIC SYSTE	M NUMBER:	11. SCREEN: Type: Diam.:
4. ABANDONMENT: Ves	∃ No		Slot/Gauge: Length:
Give Details Below Grouted Depth: from <u>16.0</u>	v	ACF #	Set Between: ft. and ft. NOTE: MULTIPLE SCREENS ft. and ft. USE SECOND SHEET
Grouted Depth: from 10.0	*Thickness		Sieve Analysis Yes (please enclose) No
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
			ft. after hrs. Pumping G.P.M. Pumping Test: Yes (please enclose) No Yield:
MONITORING WELL			14. WATER QUALITY
ABANDONED.			Chemical Analysis 🗹 Yes 🔲 No 🛛 Bacterial Analysis 🔲 Yes 🗭 No Please enclose lab results.
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No Installed from
			16. WELL GROUTED? I Yes I No
			☑ Neat Cement □ Bentonite □ Bentonite/Cement □ Other □ Depth: From <u>16.0</u> ft. to <u>SURFACE</u> ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction Type
			Weil Disinfected Yes No Type: Amount: 18. PUMP: Date installed:
			Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm TYPE: Submersible I Jet (shallow) Turbine I Jet (deep) Reciprocating Centrifugal
			19. WELL DRILLER: RANDY BRAND CERT. NO.: 1485
			1511 Hidden Bridge Dr.
*Indicate Water Bearing Zones			Mt. Pleasant, SC 29464 Telephone No.: 843-873-8200 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			Signed: Ravay Brand Date: 3/27/2024
6. TYPE: Mud Rotary Jett Dug Air Cable tool Othe	Rotary 🗌	Bored Driven	If D Level Driller, provide supervising driller's name:

Mahec	Water Well Record Bureau of WaterNote: Personal information provided on this document is subject to public scrutiny or release.2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300or release.					
1. WELL OWNER INFORMATION: Name: BHATE ENVIRONME			7. PERMIT NUMBER: UMW-29720 UST PERMIT # 16344			
(last) (first) Address: 1608 13TH AVE. SOUTH City: BIRMNGHAM State: AL Zip: 35205-0000			8. USE: Residential Public Supply Process Irrigation Air Conditioning Emergency Test Well Ø Monitor Well Replacement			
Telephone: Work: (864) 982-9890			9. WELL DEPTH (completed) Date Started: 3/25/2024			
2. LOCATION OF WELL: SC Name: BUILDING 129 JBCA Street Address: 103 SOUTH GI City: NORTH CHARLESTON Latitude: 32.896669 Longitur	RAVES AVE.	0000	10. CASING: Image: Threaded Welded Diam.: 2.0" Height: Above/Below Type: Image: PVC Galvanized Steel Other Surface 0.0 in. to 6.0 in. to ft. depth			
3. PUBLIC SYSTEM NAME: F MW-1R-129	PUBLIC SYSTE	M NUMBER:	11. SCREEN: Type: <u>SCH 40 PVC</u> Diam.: <u>2.0"</u>			
4. ABANDONMENT: □ Yes ☑ No Give Details Below Grouted Depth: from ft. to ft.			Slot/Gauge: 0.010 Length; 10.0' Set Between: 6.0 ft. and 16.0 ft. NOTE: MULTIPLE SCREENS ft. and ft. USE SECOND SHEET			
	Thickness	Depth to	Sieve Analysis Yes (please enclose) No No Sieve Analysis Yes (please enclose) ft, below land surface after 24 hours			
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.			
SEE GEOLOGIST LOG			Yield:			
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No Installed from 4.0 ft. to 6.0 Effective size 2 Uniformity Coefficient			
			16. WELL GROUTED? ☑ Yes □ No ☑ Neat Cement □ Bentonite □ Bentonite/Cement □ Other Depth: From 3.0 ft. to SURFACEft.			
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft			
			18. PUMP: Date installed: Not installed Mfr. Name: Model No.: H.P Volts Length of drop pipe TYPE: Submersible Jet (shallow) Jet (deep) Reciprocating Centrifugal			
			19. WELL DRILLER: RANDY BRAND CERT. NO.: 1485 Address: (Print) Level: A B C D (circle one) 1511 Hidden Bridge Dr. Print D C C C C C C C C C C C C C C C C C C			
*Indicate Water Bearing Zones			Mt. Pleasant, SC 29464 Telephone No.: 843-873-8200 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under			
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief,			
5. REMARKS: BENTONITE SEAL: 3.0'-4.0'			Signed: Rang Bross Date: 3/27/2024			
6. TYPE: Mud Rotary Dug Air F Cable tool Othe	Rotary 🗆	Bored Driven	If D Level Driller, provide supervising driller's name:			

putho : 55 Cloudy IRCA TH-544 Well Replacement 11:00 Abandon MW-1-129 and install NOW WILL to MW-118-129. 11:05 HAS Meeting, Discuss willing rearby will installation Why Brand, Connor from Terru Eavinonmental 10 Begin drilling 4.25 angur Wing Geoprobe 7822 140 Dall to d 1.45 Install 0.01 statt Screen from 6.16'tt. L Sape Filter porch #2 grave Matell from 16-10 4 Ft 615. Bentonte chips inste trom 4' to 2' bls. Added water to activete

RIZO BRoch for Inch 3:00 Been from Iwil N3:10 Pull 4 inch We I will casing in origina 13:30 Bachfill with cement 13:40 Begin breching old CONCRET PLA. 3X3,5" 13:55 Removed all Concrete parts 14:05 Top 50.1 and down in location of old 14:20 High strength concrete Mix isid for granting new well to surface 14:30 BEJIN MIXING Grow neu prol.

- Water level at 2.9961s 00 - Lawre comes 6 document progresse O Discussion about overdrilling 1 is decided dallers will return tomorrow with the proper size day,65 inches to provid and remove taninenty 30 dearing up site 100 off IDW(10nm) Offsi te , Drillers and P. Bembie

Weather: 60° Forthy Cloudy 3/26/24 JBCA-TU-544 100 P. Bambach on 8:00 Terry EAVNORMENTA Rendy and Connor) on - 5 1:25 Hulth and safety Moeting. with Terry Environment. Discussed hand angerman to depth be oil it. heath (4ft), even though active lines are in fl 606 odan is to re sand pack soul that resent would old will MW-1-129 9:05 Begin drilling Ui 6.25 angers 09:40 Advance He auger to 16 Abls

09:50 Advariat to 18 \$1 65/1 removed gray silty, muddy sard with strong petro oder (5-10) ft Natenal adam la 0:40 Angers are completely amoved from overaling hole 0:45 Drillers begin Filling in note with cement on 100 1.25 additional drivens of IDW. Total of 2.25 drums used for well abondonment. 1.25 Hole filled to 2'b with coming 0 1.40 IDW corned by dal run to travbor 2.10 TO Bugs of growl brekfill hole:

12:20 ke mil ping 2 builtilled with top soil to JWG-12:25 Rut morths from rig Filled with top 50.1 and ceed 12:30 Cones ph 50 of grant filled hold so no one steps on it it is settling. 13:05 Drillers on (2.25 druns) Storane 13:4

Attachment 6

Soil Gas Sampling and Summa Cannister Operation SOPs

Region 4 U.S. Environmental Protection Agency Laboratory Services & Applied Science Division Athens, Georgia				
Operating	, Procedure			
Title: Soil Gas Sampling	ID: LSASDPROC-307-R5			
Issuing Authority: Field Services Branch Supervisor				
Effective Date: April 22, 2023	Review Due Date: February 06, 2024			
Method Reference: N/A	SOP Author: Landon Pruitt			

Purpose

This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.

Scope/Application

The procedures contained in this document are to be used by field personnel when collecting and handling soil gas samples in the field. On the occasion that LSASD field personnel determine that any of the procedures described in this section are inappropriate, inadequate or impractical and that another procedure must be used to obtain a soil gas sample, the variant procedure will be documented in the field log book, along with a description of the circumstances requiring its use. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

TABLE OF CONTENTS

1	General Information	3
1.1	Documentation/Verification	3
1.2	General Precautions	3
2.2	Special Precautions for Soil Gas Sampling	4
2.4	Quality Control	
2.5	Records	
3	Geoprobe® PRT System Installation	5
3.1	General	
3.2	PRT System Installation Procedures	6
3.3	Decommissioning PRT Sample Locations	8
4	Geoprobe® Permanent Soil Gas Implant Installation	8
4.1	General	8
5	Sub-Slab Soil Gas Sampling Port Installations	11
5.1	General	11
5.2	Installation of Temporary Sub-slab Soil Gas Sampling Ports	11
5.3	Installation of Permanent Sub-slab Soil Gas Sampling Ports	12
6	Helium Leak Testing of PRT Soil Gas Sampling Installations	12
6.1	General	12
6.2	Helium Leak Testing Procedures for PRT Soil Gas Sampling Installations	12
6.3	Helium Leak Testing Procedures for Sub-slab Soil Gas Sample Ports	13
7	Sampling Soil Gas Installations	13
8	References	
9	Revision History	17

1 General Information

1.1 Documentation/Verification

This procedure was prepared by persons deemed technically competent by LSASD management, based on their knowledge, skills and abilities and has been tested in practice and reviewed in print by a subject matter expert. The official copy of this procedure resides on the LSASD Local Area Network (LAN). The Document Control Coordinator (DCC) is responsible for ensuring the most recent version of the procedure is placed on LAN and for maintaining records of review conducted prior to its issuance.

1.2 General Precautions

1.2.1 Safety

Proper safety precautions must be observed when collecting soil gas samples. Refer to the LSASD Safety, Health and Environmental Management Program (SHEMP) Procedures and Policy Manual and any pertinent site-specific Health and Safety Plans (HASP) for guidelines on safety precautions. These guidelines should be used to complement the judgment of an experienced professional. Address chemicals that pose specific toxicity or safety concerns and follow any other relevant requirements, as appropriate.

1.2.2 Procedural Precautions

The following precautions should be considered when collecting soil gas samples.

- **1.2.2.1** Special care must be taken not to contaminate samples. This includes storing samples in a secure location to preclude conditions which could alter the properties of the sample.
- 1.2.2.2 Samples shall be custody sealed during long-term storage or shipment.
- **1.2.2.3** Custody seals should not be placed on the canisters due to VOCs that may out-gas from the adhesives. Custody seals should be placed on the outside of canister shipping containers.
- **1.2.2.4** Sample identification tags shall be attached to the canister using wire, cable tie, or string. Adhesive labels should be affixed to the tag and not be placed directly on the canister.
- **1.2.2.5** Collected samples are in the custody of the sampler or sample custodian until the samples are relinquished to another party.
- **1.2.2.6** If samples are transported by the sampler, they will remain under his/her custody or be secured until they are relinquished.
- 1.2.2.7 Shipped samples shall conform to all U.S. Department of

Transportation (DOT) and/or International Air Transportation Association (IATA) hazardous materials shipping requirements.

- **1.2.2.8** Documentation of field sampling is done in a bound logbook.
- **1.2.2.9** Chain-of-custody (COC) documents shall be filled out and remain with the samples until custody is relinquished.
- **1.2.2.10** Canister Sample Identification Tags and COC and Field Logbook should list the unique canister serial number and the starting time that the sample was collected.
- **1.2.2.11**All shipping documents, such as air bills, bills of lading etc., shall be retained by the project leader and stored in a secure place.

2.0 Special Sampling Considerations

2.1 Special Considerations for Sampling

The tubing used as part of either of the described sampling systems should be Teflon® or stainless steel. As most current soil gas sampling will be conducted to investigate the presence or extent of organic compounds (not including PFAS compounds), Teflon® tubing is required to ensure the integrity of the sample.

Extreme care should be taken to protect all VOC sampling equipment whose surfaces will come in direct contact with the collection of the sample. For instance, a Geoprobe® or other drilling rig should not be used to carry or transport sampling equipment because of diesel and other VOC emissions. In addition, other field support vehicles should not be operated in the proximity of the sampling site shortly before or during sampling.

2.2 Special Precautions for Soil Gas Sampling

- **2.2.1** A clean pair of new, non-powdered, disposable gloves (gloves) will be worn each time a different location is sampled, and the gloves should be donned immediately prior to sampling. The gloves should be changed any time during sample collection when their cleanliness is compromised.
- **2.2.2** If possible, one member of the field sampling team should take all the notes and photographs fill out tags, etc., while the other member(s) collect the samples.
- **2.2.3** Using O-rings on all PRT tooling, adapters, and probe rods will ensure that the entire sampling train is air-tight. This will prevent soil ingress during installation and to maintain sample integrity by ensuring that no ambient air is introduced into the sample during collection.

2.3 Sample Handling Requirements

- **2.3.1** Soil gas samples will typically be collected by directly filling an evacuated, 6-liter passivated stainless-steel canister after sample delivery line purging.
- **2.3.2** The canister will be labeled and identified according to LSASD Operating Procedure for Packaging, Marking, Labeling and Shipping of Environmental and Waste Samples (LSASDPROC-209).

2.4 Quality Control

Quality control sampling for soil gas sampling investigations will consist of collection of the following types of samples, as appropriate.

- **2.4.1** Control Sample: If applicable to the study or investigation, a control (or background) sample should be collected from a location not affected by the possible contaminants of concern and submitted with the other samples.
- **2.4.2** Trip Blank: A canister trip blank, prepared prior to the investigation by LSB personnel, should follow alongside the traditional samples and be submitted with the sample set during the investigation.
- **2.4.3** Equipment rinsate blank: Equipment rinsate blanks should be collected if equipment, such as PRT adapters, probe rods, or other sampling equipment is field cleaned and re-used in the sample train to document that low-level contaminants were not introduced into the sample by the decontaminated equipment.
- 2.4.4 Field Split: Field split samples, at a minimum frequency of one for every ten samples should be collected. Split samples are collected from one single sample port or installation by attaching the center leg of a Swagelok® "Tee" to the end of the sample tubing. The remaining legs of the "Tee" are connected to two sample containers (usually two flow controllers with roughly the same calibrated flow) which are opened and filled simultaneously.

2.5 Records

Information generated or obtained by LSASD personnel will be organized and accounted for in accordance with LSASD records management procedures found in the LSASD Operating Procedure for Control of Records (LSASDPROC-002). Field notes, recorded in a bound field logbook, will be generated, as well as chain-of-custody documentation according to the procedures found in LSASD Operating Procedure Logbooks (LSASDPROC-010) and LSASD Operating Procedure for Sample and Evidence Management (LSASDPROC-005).

3 Geoprobe® PRT System Installation

3.1 General

Single event or grab sampling may be conducted using the Post-Run Tubing System (PRT). Using this system, soil gas samples can be collected quickly and with a high degree of assurance that the samples are representative of the targeted depth.

The downhole components of the PRT system include:

- **3.1.1** Sample delivery tubing
- **3.1.2** Probe rods
- 3.1.3 PRT Adapter
- **3.1.4** Expendable point holder
- 3.1.5 Expendable point

O-ring seals are used on the PRT Adapter and the expendable point holder. O-rings can also be used at all rod joints, preventing soil ingress which can prevent air-tight docking of the PRT adapter.

3.2 PRT System Installation Procedures

The following procedures are used to collect soil gas samples using the Geoprobe® PRT system. The PRT system is available for 1.0-inch, 1.25-inch and 1.5-inch diameter probe rods. In LSASD practice, 1.25-inch rods are used. All parts or accessories used in the PRT system must be selected with the appropriate diameter probe rod in mind to ensure compatibility of all components.

- **3.2.1** Ensure that the sampling location has been cleared using the procedures detailed in the Site Safety Plan. The plan should stipulate that: prior to site arrival the proposed soil gas sampling locations will be cleared using the One Call utility locating service. Upon arrival at the site each individual soil gas sampling location will be cleared using a pipe scanner and metal locater.
- **3.2.2** Cut a 4-foot by 4-foot section of disposable plastic sheeting and place on the ground next to the sampling location.
- **3.2.3** Hand auger a 4-foot deep hole using a clean stainless-steel hand auger emptying the soil cuttings on the plastic sheeting.
- **3.2.4** Don a clean set of gloves. To ensure there is no thread damage to the internal threads of the expendable point holder or the PRT adapter, hand screw the PRT adapter counter-clockwise into the expendable point holder using only your fingertips. The two components should screw together smoothly. If they do not replace them and repeat the test. Note: PRT fittings are left-hand threaded; turn counterclockwise to tighten.
- **3.2.5** Place O-ring on PRT expendable point holder and attach to initial section of probe rod.
- **3.2.6** Place O-ring on expendable point and press into expendable point holder.

- **3.2.7** Add drive cap to probe rod and push PRT system through the augured hole into ground to the bottom of the sampling interval. Take special care to assure that the rods are in line with the push axis of the probe machine.
- **3.2.8** It is important to leave at least a 2-foot interval of undisturbed native soil between the augured hole and the top of the sampling interval. The native soil layer will be used to support the bentonite/soil layers described in Step 11.
- **3.2.9** At the bottom of the desired sampling depth, attach a point popper to an extension rod and insert extension rod string into rods so that the point popper rests on the expendable point. Using the rod puller and taking special care to maintain probe alignment with the rods, begin pulling the rods while maintaining pressure on the extension rods. The extension rods should drop when the pull is started, indicating that the expendable point has been ejected. The rods can then be pulled to expose the desired open sampling interval.
- **3.2.10** Using a properly decontaminated water level sounder, check, if conditions warrant, to make sure groundwater is not present at the bottom of the rod string. If groundwater is present, the sampling location should be properly abandoned, and an alternate sampling location determined. Soil gas samples should never be collected if there is a high possibility that groundwater may enter the sampling equipment. The groundwater will ruin the sampling and analysis equipment and invalidate the soil gas sample.
- **3.2.11** The drive rods that are contained in the augured hole will be "sealed" by first adding 12 inches of bentonite clay crumbles (not pellets) and hydrating with deionized water. Second, the augured hole will be filled with alternating layers of soil cuttings and hydrated bentonite clay crumbles while being hand packed with a clean stainless-steel auger handle or similar device.
- **3.2.12** Secure the PRT adapter to a length of Teflon® tubing sufficient to reach from the sampling interval to the surface, with several feet of excess tubing extending beyond the top of the probe rod to facilitate sampling. Straighten the first two feet of tubing above the adapter by pulling it between your thumb and forefinger. This will ease the docking of the tubing.
- **3.2.13** Run the tubing and adapter into the probe rod and, using steady downward pressure turn the tubing counter-clockwise to dock the adapter into the top of the expendable point holder. Tug gently on the tubing to ensure that the adapter engaged with the expendable point holder. Continue rotating the tubing until the adapter is firmly seated. Failure to dock could indicate that soil intruded during the push or that the expendable point was lost during the push.
- **3.2.14** At this point, the PRT system has been installed and is ready to be helium leak tested (Section 6) before sampling. If the sample cannot be collected immediately, the end of the tubing should be capped with a stainless-steel Swagelok® cap or crimped by bending over and securing with a cable tie. Sampling is conducted using one of the

procedures described in Section 7.

3.3 Decommissioning PRT Sample Locations

Because it is impractical to pump grout through the PRT adapter on the lead probe rod, the entire string of rod must be removed before decommissioning can commence. The following methods are available, depending on conditions related to sample depth and post-removal probe hole wall stability:

- **3.3.1 Direct Placement of Pellets or Grout** If the sampling depth was relatively shallow, on the order of ten feet or less, or the bore hole did not penetrate a water table, grouting/sealing the open hole can be accomplished by directly placing bentonite pellets, hydrated in lifts or pouring a 30% solids bentonite grout mixture from the surface. The acceptable maximum depth for this option is somewhat dependent on the stability of the hole and these methods may be used at slightly greater depths if the holes do not collapse after removal of the rod.
- **3.3.2 Re-entry Grouting** For locations where sampling was conducted at somewhat greater depths, where groundwater was penetrated, or where the surficial formations tend to collapse, the only viable option for grout placement may be to reprobe the entire depth with a new expendable point. After reaching the original sample depth, the expendable point is ejected and the hole is grouted by directly injecting grout through the inside of the rod string, as it is removed. Use of this option is dependent on the relative degree of hole stability.

4 Geoprobe[®] Permanent Soil Gas Implant Installation

4.1 General

Long-term soil gas sampling may be conducted using permanent soil gas sampling implants installed with the Geoprobe®. Stainless steel implants may be installed at any depth achievable by the Geoprobe® and may be installed using various diameters of probe rod. In LSASD practice, 2.25-inch probe rods are used. The implants may be installed in custom lengths, configured using a wide assortment of available implant lengths and connections. The implant screens are double-woven stainless steel mesh with 0.0057-inch (0.15 mm) pore openings.

Permanent soil gas sampling implants may also be installed using 2.125-inch diameter rods utilizing an advancing thin-walled corer to facilitate placement of the implant (see Geoprobe Systems, Direct Push Installation of Devices for Active Soil Gas Sampling & Monitoring, Technical Bulletin No. MK3098 for details of this application).

4.2 Installation of Permanent Soil Gas Sampling Implants (Typical)

The following procedures are used by LSASD to install a permanent soil gas sampling implant using the Geoprobe®. These are the general procedures which are used with 2.25-inch diameter probe rod.

4.2.1 Ensure that the sampling location has been cleared using the procedures detailed in the Site Safety Plan. The plan should stipulate that: prior to site arrival

the proposed soil gas sampling locations will be cleared using the One Call utility locating service. Upon arrival at the site each individual soil gas sampling location will be cleared using a pipe scanner and metal locater.

- **4.2.2** Cut a 4-foot by 4-foot section of disposable plastic sheeting and place on the ground next to the sampling location.
- **4.2.3** Hand auger a 4-foot deep hole using a clean stainless-steel hand auger emptying the soil cuttings on the plastic sheeting.
- **4.2.4** Don a clean set of gloves. To ensure there is no thread damage to the internal threads of the expendable implant anchor or the implant, hand screw the implant counter-clockwise into the expendable implant anchor using only your fingertips. The two components should screw together smoothly. If they do not replace them and repeat the test. Note: implant fittings are left-hand threaded; turn counterclockwise to tighten.
- **4.2.5** Place o-ring on PRT expendable implant anchor and attach to initial section of probe rod.
- **4.2.6** Add drive cap to probe rod and push PRT system through the augured hole into ground to the bottom of the sampling interval. Take special care to assure that the rods are in line with the push axis of the probe machine. Do not retract rod or removed expendable point yet.
- **4.2.7** Using a properly decontaminated water level sounder, check, if conditions warrant, to make sure groundwater is not present at the bottom of the rod string. If groundwater is present, the sampling location should be properly abandoned, and an alternate sampling location determined. Soil gas samples should never be collected if there is a high possibility that groundwater may enter the sampling equipment. The groundwater will ruin the sampling and analysis equipment and invalidate the soil gas sample.
- **4.2.8** Install an o-ring on the docking end of the implant. Next, secure the implant to a length of 1/4"Teflon[®] tubing sufficient to reach from the sampling interval to the surface, with several feet of excess tubing extending beyond the top of the probe rod to facilitate sampling. Use electrical tape or a cable tie to temporarily cap the end of the tubing. Straighten the first two feet of tubing above the adapter by pulling it between your thumb and forefinger. This will ease the docking of the tubing.
- **4.2.9** Run the tubing and implant into the probe rod and, using steady downward pressure turn the tubing counter-clockwise to dock the adapter into the top of the expendable point holder. Tug gently on the tubing to ensure that the adapter engaged with the expendable point holder. Continue rotating tubing until the adapter is firmly seated. If docking is difficult, try running the implant and tubing thru an appropriate length of 1/2" PVC tremie pipe to better align the implant with the expendable point to facilitate docking. Remove the tremie pipe once docking is achieved. Failure to dock could indicate that soil intruded during the push or that the expendable point was lost

during the push. If the implant does not dock, it is possible to salvage the installation by removing the implant and sealing the small hole on the bottom of the implant, if present, with foil or with a small sheet metal screw, then returning the implant to the hole.

- **4.2.10** After the implant has been docked, use a pull cap and pull the probe rod approximately one foot while applying slight downward pressure on the tubing connected to the implant. This should start to expose the implant in the sampling interval. Take care while moving the rod and observe the tubing to make sure that the anchor and implant remained in place and is not being pulled with the rod.
- **4.2.11** If the implant remained in place, slowly pour a measured amount of 60-100 mesh glass beads down the inside of the probe rod. The glass beads are used as a filter pack around the implant. The implant should be covered with beads to approximately six inches above the top of the implant. The volume of beads should be calculated based on the length of implant used, alternatively, a water level sounder can be used to measure the top of the bead layer. While pouring the beads, it is advisable to gently shake the tubing to prevent the beads from bridging inside the probe rod.
- **4.2.12** After placing the beads, the implant is sealed using a flowable mixture of the glass beads and fine-powdered bentonite. To accomplish this, at least 6 inches of rod is pulled, and the mixture is slowly poured into the rod above the bead-packed implant. As with the bead placement, similar care should be taken to avoid bridging of this mixture.
- **4.2.13** After placement of the seal, the rod string is removed, and the resultant annular space is grouted using the following procedures which are dependent on the depth and stability of the open hole.
- **4.2.14** If the resultant open hole is shallow (ten feet or less) and the hole walls are stable, the hole may either be filled with bentonite pellets, hydrated in lifts or grouted using a 30% solids bentonite grout, poured from the surface.
- **4.2.15** If the hole is deeper than ten to fifteen feet, better results may be obtained by using a tremie pipe to place a pumpable grout. One half inch PVC tremie pipe or Geoprobe nylon grout tubing is threaded down the annulus to the top of the bead/bentonite seal. The tremie is pulled off the bottom to prevent jetting out the seal and grout is pumped until the annulus is filled. Procedures are similar to those for well annular seals described in LSASDGUID-101, Section 2.3.5.
- **4.2.16** For permanent or long-term installations, the tubing should be protected by an appropriate surface completion, such as a flush vault or well protective casing, similar to well protective casings, as described in LSASDGUID-101. After the installation of the vault, cut off the end of the tubing with the previously installed electrical tape or cable tie and cap with a stainless-steel capping fitting.
- **4.2.17** After installation is complete the soil gas implant is sampled using one of the methods described in Section 7.

4.2.18 Helium leak testing is not practical nor required for permanent soil gas installations.

5 Sub-Slab Soil Gas Sampling Port Installations

5.1 General

For soil gas samples that need to be collected under a current structure, sub-slab soil gas ports should be installed. Temporary or long-term installations may be installed depending on the project needs. Stainless steel screens may be installed if loose or unconsolidated soils lie underneath the slab. Extreme care should be taken in the location of the drilled sample ports.

5.2 Installation of Temporary Sub-slab Soil Gas Sampling Ports

The following procedures are used to install a temporary sub-slab soil gas sampling port.

- **5.2.1** Ensure that the sampling location has been cleared using the procedures detailed in the Site Safety Plan. As most if not all of these applications will be inside, a One Call utility locating service might not help. Upon arrival at the site, each individual sub-slab sampling location should be cleared verbally and visually with a site engineer or home owner, whoever is available with the most knowledge on the structure.
- **5.2.2** Don a clean pair of gloves and drill in the desired location with a 1/2" masonry bit. After drilling, make sure the bit is completely through the slab either by running something rigid along the inside of the borehole to feel the slab end or by visually observing soil cuttings on or from the drill bit. Ensure there is no water in the borehole before moving on. Again, soil gas samples should never be collected if there is a high possibility that groundwater may enter the sampling equipment. The groundwater will ruin the sampling and analysis equipment and invalidate the soil gas sample. If so, choose another sample location.
- **5.2.3** Cut a piece of Teflon® tubing to a length of the slab thickness, plus two feet for room to reach sampling equipment. Straighten the end of the tubing and place it down the borehole to a height just above the bottom of the slab. If there is unconsolidated soil present that could potentially clog the sampling inlet, a clean stainless-steel screen can be fastened to the end of the tubing.
- **5.2.4** After brushing away concrete dust, a VOC-free clay or putty like media is then used to secure the tubing and create an air tight seal at the slab interface. After a leak test is conducted according to Section 6.3, the end of the sampling tube is then connected to the sampling device or crimped and secured if sampling is to happen later.

After sample collection according to a method described in Section 7, the holes are immediately abandoned by filling the borehole with cement. A slightly thin mixture of cement will ensure no bridging of the mixture as it pours and makes a more solid patch. A small diameter piece of wire is good for working cement into hole. Check the cement patch for effectiveness before leaving the site.

5.3 Installation of Permanent Sub-slab Soil Gas Sampling Ports

The following procedures are used to install a permanent sub-slab soil gas sampling port.

- **5.3.1** Each sample location should be cleared to the best of the sampling team's ability following step 1 in Section 5.2 above.
- **5.3.2** Don a clean pair of gloves and drill in the desired location with a 1" masonry bit to a depth needed to just submerge the permanent sample port body into the concrete to have a flush final product. Finish drilling the remainder of the slab thickness with a 1/2" masonry bit. After drilling, make sure the bit is completely through the slab either by running something rigid along the inside of the borehole to feel the slab end or by visually seeing soil cuttings on the drill bit. Ensure there is no water in the borehole before moving on. If so, choose another sample location.
- **5.3.3** The port should be made of stainless steel with an air tight connection to a length of stainless steel 1/4" tubing long enough to reach down to just above the bottom of the slab and have a cap or plug that can make an air tight seal when left between sampling events. Again, a clean stainless-steel screen can be added to the end of the sample tube if needed to prevent soil from penetrating the sample inlet.
- **5.3.4** Place the permanent sample port into the drilled borehole with a piece of malleable VOC-free media to seal the hole where it narrows (to keep the cement off the sample inlet). Seal the sample port in place using anchor cement and allow to set overnight.
- **5.3.5** After port is set, perform a leak test as described in Section 6.3. If the sample port passes the leak test, samples may then be collected by one of the methods described in Section 7. Leak tests should be completed for every sampling event, as torquing the plug can crack the anchor cement over time.

6 Helium Leak Testing of PRT Soil Gas Sampling Installations

6.1 General

Leak testing of soil gas sampling installations should be conducted if the sampling equipment has a connection that if compromised would emit ambient air into the soil gas sample. For sub-slab soil gas sample ports, it is most important to leak test temporary sample ports as the integrity of the seal made by the malleable VOC-free media used can be easily damaged.

6.2 Helium Leak Testing Procedures for PRT Soil Gas Sampling Installations

- **6.2.1** The sampling system will be leak checked by inserting a 1/8" diameter Teflon® tubing into the drive rod next to the 1/4-inch diameter Teflon® sampling tubing, until it bottoms out a few inches above PRT adaptor. The 1/8" diameter tubing will be connected to a 99.999% pure helium source.
- 6.2.2 A second length of 1/4" Teflon® tubing will be inserted into the drive rod to a point

approximately one foot below the top of the rod. The free end of this tubing will be connected to a helium meter that will monitor the helium content of the drive rod during the leak test.

6.2.3 The top of the drive rod and tubing will be sealed with Parafilm® to retain the helium for the leak test. The drive rod will be filled with helium to a concentration of greater than 90%, while a soil gas sample is collected into a Tedlar® bag through the 1/4" Teflon® sample tube for on-site sample analysis of helium content. When the Tedlar® bag is disconnected from the sample tubing the sample tubing is crimped and held with a rubber band or cable tie, to prevent ambient air from entering the sample tube. The helium concentration in the Tedlar® bag must be less than 10% of the helium concentration in the drive rod to insure integrity of the soil gas sampling well. When the leak test is complete, the Parafilm®, helium supply, and monitoring tubes will be removed, leaving the sample tube.

6.3 Helium Leak Testing Procedures for Sub-slab Soil Gas Sample Ports

- **6.3.1** The sampling system will be leak checked by covering the sample port with a shroud that can be filled from a 99.999% pure helium source. The shroud will allow two other ports where the leak check sample can be pulled and the helium concentration in the shroud can be testing similar to the set-up in Section 5.2 above.
- **6.3.2** The shroud will be filled with helium to a concentration of greater than 90%, while a soil gas sample is collected into a Tedlar® bag through the 1/4" Teflon® sample tube for onsite sample analysis of helium content. When the Tedlar® bag is disconnected from the sample tubing the sample tubing is crimped and held with a rubber band or cable tie, to prevent ambient air from entering the sample tube. The helium concentration in the Tedlar® bag must be less than 10% of the helium concentration in the shroud to insure integrity of the soil gas sampling port. When the leak test is complete, the shroud, helium supply, and monitoring tubes will be removed, leaving the sample tube connected to the port.
- **6.3.3** For temporary sub-slab sample ports, if the leak test fails, the malleable VOC-free media can be reinserted, added to, or shifted and tested again. After the sample port passes, take care in not moving or shifting the seal media before sample collection.

7 Sampling Soil Gas Installations

7.1 Soil gas samples may be collected from PRT and permanent soil gas implant installations using one of several methods, listed below. Canister sampling is the most common method utilized by LSASD.

7.1.1 Canister Sampling for Laboratory Analysis – After installation is complete and immediately prior to sampling, a flow-limiting device, consisting of a Nupro® 7micron sintered stainless steel filter, a critical orifice and gauge is attached to an evacuated canister for sampling. A sampler leak check is conducted by plugging the inlet of the flow control device and opening the canister valve momentarily. After the valve has been closed the needle on the gauge should not move (remain at full vacuum) indicating that at the sampler is leak free.

- **7.1.2** Once the PRT installation or the sub-slab sample port has passed the helium leak test as described in Section 5 and the sampler leak check has been completed, the Teflon® sample tube is connected to the flow-limiting device using a Swagelok® or other suitable secure connection. After connection, the rubber band (if used) is cut and the crimp in the Teflon® tubing straightened and the valve on the canister is opened, pulling soil gas from the implant into the canister. Typically, the sample is collected over a one-hour period (depending on soil conditions), at which time the canister valve is closed, and the canister tagged with pertinent sampling information. When using this type of device, it is advisable to check the canister vacuum throughout the sampling period to verify filling. The initial and final gauge pressure/vacuum reading should be recorded in the project logbook.
- 7.1.3 Real-time Field Analytical Methods Real-time analytical measurements may be obtained from PRT, soil gas implant, or sub-slab port installations using appropriate instrumentation. The soil gas to be analyzed may be drawn directly into the instrument by the instrument pump or the instrument may be placed in line and the sample drawn into the instrument using a suitable pump connected to the discharge side of the instrument. Results may be qualitative, such as those obtained with flame ionization or photoionization detectors, or they may be quantitative, for instruments which can be calibrated to specific compounds.

8 References

Geoprobe® Systems Tools and Equipment Catalog, Kejr Engineering, Inc., Salinas, Kansas, 1997.

International Air Transport Authority (IATA). Dangerous Goods Regulations, Most Recent Version

LSASD Operating Procedure for Control of Records, LSASDPROC-002, Most Recent Version

LSASD Operating Procedure for Equipment Inventory and Management, LSASDPROC-104, Most Recent Version

LSASD Operating Procedure for Field Equipment Cleaning and Decontamination, LSASDPROC-205, Most Recent Version

LSASD Operating Procedure for Field Sampling Quality Control, LSASDPROC-011, Most Recent Version

LSASD Operating Procedure for Logbooks, LSASDPROC-010, Most Recent Version

LSASD Operating Procedure for Packaging, Marking, Labeling and Shipping of Environmental and Waste Samples, LSASDPROC-209, Most Recent Version

LSASD Operating Procedure for Sample and Evidence Management, LSASDPROC-005, Most Recent Version

<u>The Yellow Field Book</u>, Compellation of GeoProbe Equipment, Kejr Engineering, Inc., Salinas, Kansas, 2000.

US EPA. 1999. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS); Center for Environmental Research Information, Office of Research and Development, Cincinnati, OH; EPA/625/R-96/010b

US EPA. Laboratory Services Branch Laboratory Operations and Quality Assurance Manual. Region 4 LSASD, Athens, GA, Most Recent Version

US EPA. April 13, 1981. Final Regulation Package for Compliance with DOT Regulations in the Shipment of Environmental Laboratory Samples. Memo from David Weitzman, Work Group Chairman, Office of Occupational Health and Safety (PM-273)

US EPA. Safety, Health and Environmental Management Program Procedures and Policy Manual. Region 4 LSASD, Athens, GA, Most Recent Version

Geoprobe Systems, Direct Push Installation of Devices for Active Soil Gas Sampling & Monitoring,

Technical Bulletin No. MK3098, Prepared May, 2006.

Geoprobe Soil Gas Sampling/ PRT Operation Instructions, October 24, 2017 https://geoprobe.com/literature/soil-gas-samplingprt-operation-instructions

Dielectric Technologies Model MGD-2002 Multi Gas Leak Detector Instruction Manual, IB-417 RevA PartNo. 84671 http://www.enviroequipment.com/sites/default/files/documents/instruments/Dielectric-MGD-2002-Manual.pdf

9 **Revision History**

The top row of this table shows the most recent changes to this controlled document. For previous revision history information, archived versions of this document are maintained by the LSASD Quality Assurance Coordinator on the LSASD local area network (LAN).

History	Effective Date	
Replaced Chief with Supervisor; General formatting revisions.	April 22, 2023	
LSASDPROC-307-R4, <i>Soil Gas Sampling</i> , replaces LSASDPROC-307-R3	February 7, 2020	
General: Corrected any typographical, grammatical, and/or editorial errors. Soil gas sampling procedures were updated, and helium leak testing and sub- slab sampling procedures were added to the document. SESD updated to LSASD.		
 Cover Page: Changed the Author from Tim Slagle to Landon Pruitt. Changed Enforcement and Investigation Branch to Applied Sciences Branch. Changed Science and Ecosystem Support Division to Laboratory Services and Applied Science Division. Quality manager Bobby Lewis was changed to Stacy Masters. Revision History: Changes were made to reflect the current practice of only including the most recent changes in the revision history. 		
LSASDPROC-307-R3, <i>Soil Gas Sampling</i> , replaces LSASDPROC-307-R2	May 14, 2014	
LSASDPROC-307-R2, Soil Gas Sampling, replaces LSASDPROC-307-R1	September 8, 2010	
LSASDPROC-307-R1, <i>Soil Gas Sampling</i> , replaces LSASDPROC-307-R0	November 1, 2007	
LSASDPROC-307-R0, Soil Gas Sampling, Original Issue	February 05, 2007	

SUMMA CANISTER SAMPLING

1.0 SCOPE AND APPLICATION

The purpose of this standard operating procedure (SOP) is to describe a procedure for sampling of volatile organic compounds (VOCs) in ambient air. The method is based on samples collected as whole air samples in Summa passivated stainless steel canisters. The VOCs are subsequently separated by gas chromatography (GC) and measured by mass-selective detector or multidetector techniques. This method presents procedures for sampling into canisters at final pressures both above and below atmospheric pressure (respectively referred to as pressurized and subatmospheric pressure sampling).

This method is applicable to specific VOCs that have been tested and determined to be stable when stored in pressurized and subatmospheric pressure canisters. The organic compounds that have been successfully collected in pressurized canisters by this method are listed in the Volatile Organic Compound Data Sheet (Appendix A). These compounds have been measured at the parts per billion by volume (ppbv) level.

These are standard (i.e., typically applicable) operating procedures which may be varied or changed as required, dependent on site conditions, equipment limitations or limitations imposed by the procedure or other procedure limitations. In all instances, the ultimate procedures employed should be documented and associated with the final report.

Mention of trade names or commercial products does not constitute U.S. EPA endorsement or recommendation for use.

2.0 METHOD SUMMARY

Both subatmospheric pressure and pressurized sampling modes use an initially evacuated canister. Both modes may also use a mass flow controller/vacuum pump arrangement to regulate flow. With the above configuration, a sample of ambient air is drawn through a sampling train comprised of components that regulate the rate and duration of sampling into a pre-evacuated Summa passivated canister. Alternatively, subatmospheric pressure sampling may be performed using a fixed orifice, capillary, or adjustable micrometering valve in lieu of the mass flow controller/vacuum pump arrangement for taking grab samples or short duration time-integrated samples. Usually, the alternative types of flow controllers are appropriate only in situations where screening samples are taken to assess for future sampling activities.

3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE

After the air sample is collected, the canister valve is closed, an identification tag is attached to the canister, and the canister is transported to a laboratory for analysis. Upon receipt at the laboratory, the canister tag data is recorded. Sample holding times and expiration should be determined prior to initiating field activities.

4.0 INTERFERENCES AND POTENTIAL PROBLEMS

Contamination may occur in the sampling system if canisters are not properly cleaned before use. Additionally, all other sampling equipment (e.g., pump and flow controllers) should be thoroughly cleaned.

5.0 EQUIPMENT/APPARATUS

The following equipment/apparatus (Figure 1, Appendix B) is required:

5.1 Subatmospheric Pressure Sampling Equipment

- 1. VOC canister sampler whole air sampler capable of filling an initially evacuated canister by action of the flow controlled pump from vacuum to near atmospheric pressure. (Andersen Samplers Inc., Model 87-100 or equivalent).
- 2. Sampling inlet line stainless steel tubing to connect the sampler to the sample inlet.
- 3. Sample canister leak-free stainless steel pressure vessels of desired volume with valve and Summa passivated interior surfaces (Scientific Instrumentation Specialist, Inc., ID 83843, Andersen Samplers, Inc., or equivalent).
- Particulate matter filter 2-μm sintered stainless steel in-line filter (Nupro Co., Model SS-2F-K4-2, or equivalent).
- 5. Chromatographic grade stainless steel tubing and fittings - for interconnections (Alltech Associates, Cat. #8125, or equivalent). All materials in contact with sample, analyte, and support gases should be chromatographic grade stainless steel.
- 6. Fixed orifice, capillary, or adjustable micrometering valve used in lieu of the electronic flow controller/vacuum pump for grab samples or short duration time-integrated samples.

5.2 **Pressurized Sampling Equipment**

- 1. VOC canister sampler whole air sampler capable of filling an initially evacuated canister by action of the flow controlled pump from vacuum to near atmospheric pressure. (Andersen Samplers Inc., Model 87-100).
- 2. Sampling inlet line stainless steel tubing to connect the sampler to the sample inlet.
- 3. Sample canister leak-free stainless steel pressure vessels of desired volume with valve and Summa passivated interior

surfaces (Scientific Instrumentation Specialist, Inc., ID 83843, Andersen Samplers, Inc., or equivalent).

- 4. Particulate matter filter 2-μm sintered stainless steel in-line filter (Nupro Co., Model SS-2F-K4-2, or equivalent).
- 5. Chromatographic grade stainless steel tubing and fittings - for interconnections (Alltech Associates, Cat. #8125, or equivalent). All materials in contact with sample, analyte, and support gases should be chromatographic grade stainless steel.

6.0 REAGENTS

This section is not applicable to this SOP.

7.0 **PROCEDURE**

7.1 Subatmospheric Pressure Sampling

- 7.1.1 Sampling Using a Fixed Orifice, Capillary, or Adjustable Micrometering Valve
- 1. Prior to sample collection, the appropriate information is completed on the Canister Sampling Field Data Sheet (Appendix C).
- 2. A canister, which is evacuated to 0.05 mm Hg and fitted with a flow restricting device, is opened to the atmosphere containing the VOCs to be sampled.
- 3. The pressure differential causes the sample to flow into the canister.
- 4. This technique may be used to collect grab samples (duration of 10 to 30 seconds) or time-integrated samples (duration of 12 to 24 hours). The sampling duration depends on the degree to which the flow is restricted.
- 5. A critical orifice flow restrictor will have a decrease in the flow rate as the pressure approaches atmospheric.
- 6. Upon sample completion at the location, the appropriate information is recorded on the

Canister Sampling Field Data Sheet.

- 7.1.2 Sampling Using a Mass Flow Controller/Vacuum Pump Arrangement (Andersen Sampler Model 87-100)
- 1. Prior to sample collection the appropriate information is completed on the Canister Sampling Field Data Sheet (Appendix C).
- 2. A canister, which is evacuated to 0.05 mm Hg and connected in line with the sampler, is opened to the atmosphere containing the VOCs to be sampled.
- 3. A whole air sample is drawn into the system through a stainless steel inlet tube by a direct drive blower motor assembly.
- 4. A small portion of this whole air sample is pulled from the inlet tube by a specially modified inert vacuum pump in conjunction with a mass flow controller.
- 5. The initially evacuated canister is filled by action of the flow controlled pump to near atmospheric pressure.
- 6. A digital time-program is used to pre-select sample duration and start and stop times.
- 7. Upon sample completion at the location, the appropriate information is recorded on the Canister Sampling Field Data Sheet.

7.2 Pressurized Sampling

- 7.2.1 Sampling Using a Mass Flow Controller/Vacuum Pump Arrangement (Anderson Sampler Model 87-100)
- 1. Prior to sample commencement at the location, the appropriate information is completed on the Canister Sampling Field Data Sheet.
- 2. A canister, which is evacuated to 0.05 mm Hg and connected in line with the sampler, is opened to the atmosphere containing the

VOCs to be sampled.

- 3. A whole air sample is drawn into the system through a stainless steel inlet tube by a direct drive blower motor assembly.
- 4. A small portion of this whole air sample is pulled from the inlet tube by a specially modified inert vacuum pump in conjunction with a mass flow controller.
- 5. The initially evacuated canister is filled by action of the flow controlled pump to a positive pressure not to exceed 25 psig.
- 6. A digital time-programmer is used to pre-select sample duration and start and stop times.
- 7. Upon sample completion at the location, the appropriate information is recorded on the Canister Sampling Field Data Sheet.

8.0 CALCULATIONS

1. A flow control device is chosen to maintain a constant flow into the canister over the desired sample period. This flow rate is determined so the canister is filled to about 88.1 kPa for subatmospheric pressure sampling or to about one atmosphere above ambient pressure for pressurized sampling over the desired sample period. The flow rate can be calculated by:

$$F = \frac{(P)(V)}{(T)(60)}$$

where:

F	=	flow rate (cm ³ /min)				
Р	=	final canister pressure,				
		atmospheres absolute				
V	=	volume of the canister				
		(cm ³)				
Т	=	sample period (hours)				

For example, if a 6-L canister is to be filled to 202 kPa (two atmospheres) absolute pressure in 24 hours, the flow rate can be calculated by:

$$F = \frac{(2)(6000)}{(24)(60)} + 8.3 cm^{3}/min$$

2. If the canister pressure is increased, a dilution factor (DF) is calculated and recorded on the sampling data sheet.

$$DF - \frac{Ya}{Xa}$$

where:

Xa	=	canister pressure (kPa, psia) absolute before dilution.
Ya	=	canister pressure (kPa, psia) absolute after

dilution.

After sample analysis, detected VOC concentrations are multiplied by the dilution factor to determine concentration in the sampled air.

9.0 QUALITY ASSURANCE/ QUALITY CONTROL

The following general quality assurance procedures apply:

- 1. All data must be documented on standard chain of custody records, field data sheets, or site logbooks.
- 2. All instrumentation must be operated in accordance with operating instructions as supplied by the manufacturer, unless otherwise specified in the work plan. Equipment checkout and calibration activities must occur prior to sampling/operation, and they must be documented.

10.0 DATA VALIDATION

This section is not applicable to this SOP.

11.0 HEALTH AND SAFETY

When working with potentially hazardous materials, follow U.S. EPA, OSHA, and corporate health and safety practices. Specifically, pressurizing of Summa canisters should be performed in a well ventilated room, or preferably under a fume hood. Care must be taken not to exceed 40 psi in the canisters. Canisters are under pressure, albeit only 20-30 psi, and should not be dented or punctured. They should be stored in a cool dry place and always be placed in their plastic shipping boxes during transport and storage.

12.0 REFERENCES

- Ralph M. Riggin, Technical Assistance Document for Sampling and Analysis of Toxic Organic Compounds in Ambient Air, EPA-600/4-83-027 U. S. Environmental Protection Agency, Research Triangle Park, NC, 1983.
- W. A. McClenny, J. D. Pleil, T. A. Lumpkin and K. D. Oliver, "Update on Canister-Based Samplers for VOCs," Proceedings of the 1987 EPA/APCA Symposium on Measurement of Toxic and Related Air Pollutants, May, 1987 APCA Publication VIP-8, EPA 600/9-87-010.
- J. F. Walling, "The Utility of Distributed Air Volume Sets When Sampling Ambient Air Using Solid Adsorbents," Atmospheric Environ., 18:855-859, 1984.
- J. F. Walling, J. E. Bumgarner, J. D. Driscoll,C. M. Morris, A. E. Riley, and L. H. Wright, "Apparent Reaction Products Desorbed From Tenax Used to Sample Ambient Air," Atmospheric Environ., 20:51-57, 1986.
- Portable Instruments User's Manual for Monitoring VOC Sources, EPA-340/1-88-015, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, D.C., June 1986.

- R. A. Rasmussen and J. E. Lovelock, Atmospheric Measurements Using Canister Technology, J. Geophys. Res., 83: 8369-8378, 1983.
- R. A. Rasmussen and M. A. K. Khalil, "Atmospheric Halocarbon: Measurements and Analysis of Selected Trace Gases," Proc. NATO ASI on Atmospheric Ozone, BO: 209-231.
- 8. EPA Method TO-14 "Determination of Volatile Organic Compounds (VOC's) in Ambient Air Using Summa Passivated Canister Sampling and Gas Chromatographic Analysis", May 1988.

APPENDIX A

Volatile Organic Compound Data Sheet

	FORMULA	MOLECULAR WEIGHT	BOILING POINT (°C)	MELTING POINT (°C)	CAS NUMBER
OMPOUND (SYNONYM)	PORHULA				
reon 12 (Dichlorodifluoromethane)	C12CF2	120.91 50.49	-29.8 -24.2	-158.0	74-87-3
lethyl chloride (Chloromethane)	CH3C1	170.93	4.1	-94.0	1
reon 114 (1,2-Dichloro-1,1,2,2-	CICF2CCIF2	1/0.55	4.1		1.
tetrafluoroethane)	CH2=CHC1	62.50	-13.4	-1538.0	75-01-4
/inyl chloride (Chloroethylene) Methyl bromide (Bromomethane)	CH3Br	94.94	3.6	-93.6	74-83-9
thyl chloride (Chloroethane)	CH3CH2C1	64.52	12.3	-136.4	75-00-3
reon 11 (Trichlorofluoromethane)	CC1 ₃ F	137.38	23.7	-111.0	
(inylidene chloride (1,1-Dichloroethene)	C2H2C12	96.95	31.7	-122.5	75-35-4
Dichloromethane (Methylene chloride)	CHZC12	84.94	39.8	-95.1	15-09-2
reon 113 (1,1,2-Trichloro-1,2,2-	CF2CICCI2F	187.38	47.7	-36.4	1
trifluoroethane)		00.00	57.3	-97.0	74-34-3
1,1-Dichloroethane (Ethylidene chloride)	CH3CHC12	98.96 96.94	60.3	-80.5	1 11 11 1
cis-1,2-Dichloroethylene	CHČ1=CHČ1	119.38	61.7	-63.5	67-66-3
Chloroform (Trichloromethane)	CHC13 C1CH2CH2C1	98.96	83.5	-35.3	107-06-2
1,2-Dichloroethane (Ethylene dichloride)	CH3CC13	133.41	74.1	-30.4	71-55-6
Methyl chloroform (1,1,1-Trichloroethane)	C6H6	78.12	80.1	5.5	71-43-2
Benzene (Cyclohexatriene) Carbon tetrachloride (fetrachloromethane)	CCIA	153.82	76.5	-23.0	56-23-5
1,2-Dichloropropane (Propylene	CH3CHC1CH2C1	112.99	96.4	-100.4	78-87-5
dichloride)			07	-73.0	79-01-6
Trichloroethylene (Trichloroethene)	C1CH=CC12	131.29	87	-/3.0	/3-01-0
cis-1,3-Dichloropropene (cis-1,3-	CH3CC1=CHC1	110.97	76		
dichloropropylene)	<u> </u> _		L	1	.
trans-1,3-Dichloropropene (cis-1,3-	C1CH2CH=CHC1	110.97	112.0		
Dichloropropylene)	ou c1cuc1-	133.41	113.8	-36.5	79-00-5
1,1,2-Trichloroethane (Vinyl trichloride)	CH2C1CHC12 C6H5CH3	92,15	110.6	-95.0	108-88-3
Toluene (Methyl benzene)	BrCH2CH2Br	187.88	131.3	9.8	106-93-4
1,2-Dibromoethane (Ethylene dibromide) Tetrachloroethylene (Perchloroethylene)		165.83	121.1	-19.0	127-18-4
Chlorobenzene (Phenyl chloride)	C6H5C1	112.56	132.0	-45.6	108-90-7
Ethylbenzene	CelleColle	106,17	136.2	-95.0	100-41-4
m-Xylene (1,3-Dimethylbenzene)	1,3-(CH3)2C6H4	106.17	139.1	-47.9	
p-Xylene (1,4-Dimethylxylene)	11,4-(CH3)2C6H4	106.17	138.3	13.3	100-42-5
Styrene (Vinyl benzene)	C6H5CH=CH2	104.16	145.2	-30.6	79-34-5
1.1.2.2-Tetrachloroethane	CHCI2CHCI2	167.85	146.2	-25.2	/ / / / / / / / / / / /
o-Yvlene (1.2-Dimethylbenzene)	1,2-(CH3)2C6H4	106.17	164.7	-44.7	108-67-8
1,3,5-Trimethylbenzene (Mesitylene)	1,3,5-(CH3)3C6H	6 120.20 6 120.20	169.3	-43.8	95-63-6
1.2.4-Trimethylbenzene (Pseudocumene)	1,2,4-(CH3)3C6H	6 120.20	173.0	-24.7	541-73-1
m-Dichlorobenzene (1,3-Dichlorobenzene)	1,3-C12C6H4 C6H5CH2C1	126.59	179.3	-39.0	100-44-7
Benzyl chloride (α-Chlorotoluene) o-Dichlorobenzene (1,2-Dichlorobenzene)	1,2-C12C6H4	147.01	180.5	-17.0	95-50-1
p-Dichlorobenzene (1,2-Dichlorobenzene)	1,4-01206H4	147.01	174.0	53.1	106-46-7
1,2,4-Trichlorobenzene	1,2,4-C13C6H3	181.45	213.5	17.0	120-82-1
Hexachlorobutadiene (1,1,2,3,4,4-	1		- [·	1	1
Hexachloro-1,3-but adiene)	1				1

APPENDIX B

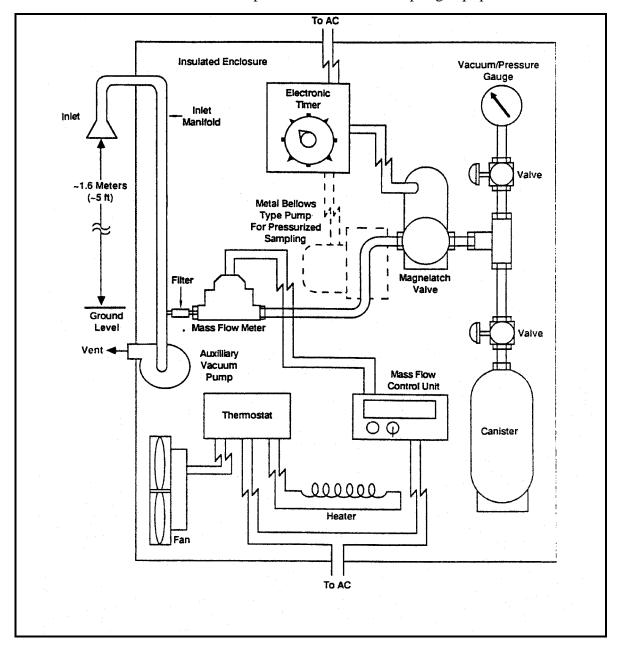


FIGURE 1. Subatmospheric/Pressurized Sampling Equipment

APPENDIX C

Canister Sampling Field Data Sheet

Page ____ of ____

SUMMA AIR SAMPLING WORK SHEET

Samplers:		Work Assignment Manager:				
Sample #						
Location						
SUMMA ID						
Orifice Used						
Analysis/Method						
Time (Start)						
Time (Stop)						
Total Time						
SUMMA WENT TO AMBIENT	YES/NO	YES/NO	YES/NO	YES/NO	YES/NO	
Pressure Gauge						
Pressure Gauge						
Flow Rate (Pre)						
Flow Rate (Post)						
Flow Rate (Average)						
MET Station On-site? Y	/ N					
General Comments:						